

 LOGOTRON

 LOGOTRON LIMITED
 5 GRANBY STREET, LOUGHBOROUGH
 LEICESTERSHIRE LE11 3DU
 TEL. 0509 230248

 SAVING PROCEDURES ON TAPE AND ECONET

Some customers have reported problems with the primitive
SAVE. when trying to save files on cassette or on Econet
Fileserver.

The way round this problem is to create two small procedures.
The first saves your entire workspace and the second saves
named procedures or global variables. There is no problem
with the primitive LOAD on either cassette or Econet.

TO SSAVE : FILENAME
(* SPOOL : FILENAME) POALL (*SPOOL)
END

TO SSSAVE : FILENAME : PROCNAMES
(*SPOOL : FILENAME) PO : PROCNAMES (*SPOOL)
END

Imagine you have created three procedures, TRIANGLE, SQUARE,
PENTAGON and one global variable, ANGLES.

SSAVE "SHAPES saves the entire workspace in a file called
SHAPES.

SSSAVE "SHAPES "SQUARE would save the single procedure
"SQUARE in the file.

SSSAVE "SHAPES [SQUARE TRIANGLE "ANGLES] would save two
procedures and the global variable ANGLES.

In short the procedures work exactly as the primitive
SAVE as documented in the manual.

i

CONTENTS
Tutorial Pages

Section One – Installation 1 .. 3

Section Two – Introduction 4 .. 7

Section Three – Meet the Turtle 8 .. 10

Section Four – Teaching Logo new tricks 11 .. 13

Section Five – Turtles can remember 14 .. 16

Section Six – Changing Logo’s mind 17 .. 19

Section Seven – Making more changes 20 .. 22

Section Eight – Making pictures 23 .. 26

Section Nine – Turtle Arithmetic 27 .. 29

Section Ten – Recursive Turtles 30 .. 33

Section Eleven – Turtle colours 31 .. 38

Section Twelve – More about pictures 39 .. 41

Section Thirteen – Moving Turtles 42 .. 44

Section Fourteen – After Turtle Graphics 45 .. 50

Section Fifteen – Back to Front 51 .. 53

Section Sixteen – More about numbers 54 .. 56

Section Seventeen – For teachers and parents 57 .. 60

Section Eighteen – List processing 61 .. 72

Section Nineteen – Tool kit 73 .. 77

ii

Reference Pages

Section Twenty – Logo Grammar 78 .. 96

Section Twenty-one – Turtle Graphics 97 .. 104

Section Twenty-two – Words and Lists 105 .. 114

Section Twenty-three – Variables 115 .. 117

Section Twenty-four – Arithmetic 118 .. 126

Section Twenty-five – Editing and Defining 127 .. 133

Section Twenty-six – Flow of Control 134 .. 140

Section Twenty-seven – Logical operations 141 .. 143

Section Twenty-eight – The Outside World 144 .. 166

Section Twenty-nine – Workspace management 161 .. 168

Section Thirty – Logo messages 169 .. 171

Section Thirty-one – Glossary of Primitives 172 .. 178

Index 179

1

SECTION ONE – INSTALLATION

Congratulations, you have bought the Logotron Logo,
produced by Systèmes d’Ordinateurs Logo International, or
SOLI for short. This is undoubtedly the most advanced Logo
available for the BBC Micro, and at the time of its
implementation can claim to be the most advanced Logo on
any 8-bit micro in the world.

This is the time to register as a Logotron Logo user. It
provides you with a valid guarantee. It also entitles you to
information about all the supplementary software available to
Logotron users. This is offered to register users at a
substantial discount on the full retail sale price. Your
registration card is enclosed in the box with this manual.

You want to get started. If the ROM has already been
installed, you can skip straight to the next section of this
manual. Here is how you check. Turn on the computer. It
may say:

(c) 1984 ACT/SOLI

WELCOME TO LOGO

?

In which case you are in business. Even if you do not
receive this rousing welcome, it is worth typing

✻LOGO

This may produce the desired effect

(c) 1984 ACT/SOLI

WELCOME TO LOGO

?

If not, your ROM needs to be inserted in any of the
“sideways” or “paged” ROM sockets. You should find the
ROM itself inserted into a piece of plastic foam inside the
Logotron loose-leaf binder. Leave it there until you have
removed the top of your computer.

BEFORE you begin work on the computer, switch it OFF
and REMOVE the mains plug from the power socket.
Then follow these instructions:

1. Remove the four screws holding the top on the computer
(on early machines, they were marked FIX). There are two
of these at the top of the back panel of the computer
(you need a posidrive or Philips screwdriver) and two
underneath the computer towards the front.

SECTION ONE – INSTALLATION

2

2. When the top is off, release the nuts holding the keyboard
in place. This is a good moment to look at the diagram on
this page, below. There is no need to disconnect the
keyboard completely, simply move it to one side, to
expose the sideways ROM sockets.

3. Locate the row of five large sockets at the front right
hand corner of the main printed circuit board (see
diagram). Two or more of these sockets will already be
filled with ROMS. The rightmost four of these sockets,
identified as IC52, IC88, IC100 and 1C101 are sideways
ROM sockets.

SECTION ONE – INSTALLATION

3

4. You can choose where to put your Logo ROM. If you
want Logo to be available as soon as you switch on your
computer, then put it on the extreme righthand side. But
this is not necessary, you can put it into any empty slot. If
you don’t have an empty slot, you have three possibilities.
You can learn to live without BASIC, or without some
other program which is occupying a slot. The second
possibility is to buy one of those expansion boards, which
allow you to plug in additional ROM. The third possibility is
to use one of your ROM slots to create a ROM cartridge
system. Whatever you decide, the one bad choice is to be
constantly taking ROMS out of the computer and putting
them back. One day, one will get damaged.

5. Having decided on the slot your ROM will occupy, it is
time to take your Logo ROM out of its plastic foam
seating, first locating a semicircular notch at one end (see
diagram). This notch tells you which way the ROM goes
into the computer. The notch points towards the back of
the computer. You will see that all the other ROMS are
aligned in the same way. MAKE SURE YOU
UNDERSTAND THIS. Before touching the ROM, it is good
practice to earth yourself, by touching a metal desk or
radiator. Static electricity can damage electronic
components. Try to handle the ROM as little as possible,
and avoid touching its metal legs.

6. These legs have to fit into slots along either side of the
socket. Make sure they are correctly aligned before
pressing the ROM home. It is essential that all the legs
are inserted and that none bends outwards or underneath
the ROM. If you have never done this before, nor seen
anyone else do it, seek help. If necessary, get your dealer
to help you. It’s not worth making a mistake at this stage.

7. Replace the keyboard and lid, reversing steps 1 and 2, and
switch on the computer as normal. Plug in the computer,
switch the power to ON, and you should be in business. If
not make sure you followed all the steps correctly,
checking in particular that all the legs of the ROM are
properly seated. If it still does not work, consult the dealer
from whom you bought Logo. If possible, take in the
machine with the faulty chip installed. This should not
happen, as all chips are tested before leaving the factory.

4

SECTION TWO – TUTORIAL INTRODUCTION

The fact that Logo attracts such a wide variety of people, of all
ages and all levels of computer experience, makes it very difficult
to write an introduction to the language which is right for
everyone.

What we have tried to do in this tutorial part of the manual
(Sections 2 – 19) is to provide something for almost
everyone. I think that anyone who can read, from the age of
ten, say, should be able to manage the first three sections,
without trouble and without help.

Older children should be able to cope with most of the first
12 sections on their own. Teenagers should find no difficulty
with any of the material, and will explore some of the more
advanced ideas in the Reference sections of the manual.

If you are already familiar with Logo, or an experienced
computer programmer, you can probably skip the tutorial
sections of the manual, and go straight on to the reference
sections, beginning with Section 20 .

Sections 17 and 18 are specifically aimed at teachers, and
parents who want to help their children with Logo. The first
of these sections (No.17) explains how you can provide a
simplified Logo for children who are too young to read, or
who face severe learning difficulties.

The second (No.18) is designed to help you to guide children
from the realtively easy world of Turtle graphics into the
rather more puzzling world of language processing.

The LCSI Standard Logo provided by Logotron for the BBC
Micro is a very complete programming system, which will
carry users far beyond the realms of Turtle graphics. When
used in conjunction with a second processor, Logotron Logo
can cope with virtually any programming problem likely to be
encountered in school.

You have full access to the operating system of the BBC
Micro, through the VDU and ✻FX commands. Furthermore,
the system is highly extensible. Additional software is
available to drive a Sprite Board and robots. Other extensions
are planned to provide advanced programming functions, for
use by ‘O’ and ‘A’ level students.

SECTION TWO – TUTORIAL INTRODUCTION

5

If you are already an advanced programmer, then you can
use the USE primitive to link up with extensions written in
machine code. This will be particularly relevant from early
1985, when we plan to release Advanced Logo, on a disc, to
complement the intitial release.

This explains the design of this manual; it is an open-ended.
You can bind in your own notes, and details of procedures.
There is room for additional documentation, which will come
from Logotron in connection with future products. We expect
teachers may want to make photocopies of some pages,
especially where they are dealing with small children, and do
not want to confuse them with piles of printed matter.

Logo is widely regarded as a “programming language for
children”. It also happens to be a “programming language for
computer scientists”. Much early work in artificial intelligence
used Logo, and it is closely related to the leading language
for designing expert systems, LISP.

Logo is now in the vanguard of the microcomputer
revolution. As home computers grow in memory power and
speed, Logo will grow with them, infinitely extensible. While
BASIC will become a forgotten curiosity, a fossil of the early
days of microcomputers.

The most important feature of Logo is that you can make it
reflect your needs, interests and personality. Most early
educational software offered an implicit model, in which the
computer was the teacher, explaining, questioning and
encouraging. The child’s role was reactive, learning from the
computer, by responding appropriately to its prompting.

Computer Assisted Learning and Computer Based Training all
accepted this model. Logo offers a completely different
model, diametrically opposed. In our model, the child (user)
is the teacher , while the computer learns. The child is
active, and the computer reactive.

But don’t take our word for it. Get cracking. This manual is
designed to be used, sitting at the computer, teaching it
what to do next.

Each section provides enough work for a single session if
you are a complete beginner. Do try out all the examples.
The text does not make much sense on its own without

SECTION TWO – TUTORIAL INTRODUCTION

6

hands on practice. Do not hesitate to turn to the reference
sections for further details of how to use the system.

Where we expect you to type on the key board, the words
you have to type are written in red. Occasionally, we refer to
a key, which has to be pressed, such as the RETURN key or
the ESCAPE key. These words, too, appear in red. If you
have to press two keys at once, for example the CTRL key
and C, we would write CTRL C. When we talk about the red
function keys at the top of your keyboard, we write about
F0, F1, F2 etc.

7

SECTION THREE – MEET THE TURTLE

You can start using Logo with a very few words:
FORWARD, BACK, LEFT and RIGHT. We write Logo words
in CAPITAL LETTERS. So it may help to press the CAPS
LOCK key at the bottom left of your keyboard.

Let’s try them. Type FORWARD 300 and press the RETURN
key. A little triangle appears in the middle of the screen, and
darts forward, drawing a line.

If you make a mistake typing FORWARD 300 and type
FROWARD, TORWARD, FORWORD or something, the
computer will say

I DON’T KNOW HOW TO FROWARD

We call this a Logo message . Do not worry about it. Just
type the line again, checking you have it right before
pressing the RETURN key.

We call the little triangle a Turtle. We call its drawings Turtle
graphics, pictures drawn by a Turtle.

Try some more Turtle graphics. Type

FORWARD 200

RIGHT 90

FORWARD 150

LEFT 90

FORWARD 100

pressing the RETURN key after each line. Make sure to
leave a space between the words. If you type
FORWARD100, for example, you will read another puzzled
message from your computer

I DON’T KNOW HOW TO FORWARD100

Don’t worry about such messages. Just start again and leave
a gap. One of the biggest differences between a language
like English and a computer language like Logo is that
computers want you to spell words just so, using the same
letters every time. This can be a bore.

Now type CS to Clear the Screen and try again. Change the
numbers to see what happens. Type BACK instead of

SECTION THREE – MEET THE TURTLE

8

FORWARD. Write all the words on one line, like this

FORWARD 500 RT 90 BACK 200 RIGHT 90 BACK 150 LEFT 90 BACK

100

and only press the RETURN key at the end of the line. If
you spot a mistake before pressing RETURN, you can rub
out the words you have written by using the DELETE key.
You can change anything until you have pressed the
RETURN key.

Once you have pressed RETURN, the computer tries its best
to carry out your instructions. If there is a something it
doesn’t understand, it complains.

But you don’t have to type out everything again. Use the
UP-ARROW key (top right hand side of the keyboard) to
move the cursor up to the first character of the last line you
typed. Now press the COPY key, and you should see a copy
of the line you typed previously, appearing on the screen.

Using the arrow keys to move the cursor around the screen,
you can use the COPY key to copy any writing from the
screen into a new line. You can learn more about this from
your BBC USER Guide, (Pages 29 and 30). This describes
the use of the COPY key in a BASIC program. It works just
as well with Logo.

Try typing CLEAN instead of CS. Discover the difference
between the two commands.

There are just two more useful words to know when playing
with Turtle graphics for the first time. They are PU, standing
for Pen Up, and PD, standing for Pen Down. If you type:

FORWARD 100

PU

FORWARD 100

PD

FORWARD 100

you will quickly understand what these words mean. They
are very useful if you want to move the Turtle from one
picture to another without leaving a trail. From now on, I
won’t remind you every time to press RETURN at the end of
each line, or whenever you want the Turtle to follow your
instructions. (You still have to do it!).

SECTION THREE – MEET THE TURTLE

9

If you want to draw many pictures with the Turtle, you will
soon get bored of typing FORWARD, RIGHT, LEFT, BACK,
PU, PD. The answer is to use shorter forms like
FD for FORWARD. In this book, when we introduce a new
word we will write its short form in brackets after the long
form, as follows: FORWARD (FD), BACK (BK), LEFT (LT),
RIGHT (RT), PU, PD.

So try out some pictures using FD, BK, RT, LT, PU and PD.
The words are easier to type, so there is less chance of
making mistakes.

Try to discover how many steps the Turtle has to take from
the very bottom of the screen to the very top. And how
many steps from one side to the other. Three more words
to explore at this stage are WINDOW, WRAP and FENCE.
Type the following.

FD 600

The Turtle disappears at the top of the screen and reappears
at the bottom. Its path wraps around the screen as if the
top edge were attached to the bottom edge. Type

WINDOW FD 1000

The Turtle disappears off the top of the screen, and is lost
to view. It is as if the screen were merely a small window
on the Turtle’s world.

CS FENCE FD 600

You get a Logo message

FD DOESN’T LIKE 600 AS INPUT

The Turtle refuses to accept any command which sends it
off the screen. It is as if a fence had been built around it.
Type

WRAP FD 600

and you are back in WRAP. Some people like that best. They
can keep an eye on the turtle. I like WINDOW best. I
imagine the Turtle drawing amazing coloured pictures out into
space, where no one can bother it.

The Turtle is always in WRAP, FENCE or WINDOW. When
you first turn it on, it is in WRAP. We call this the default
value. Once you change it, it stays in that mode until you
change it again.

SECTION THREE – MEET THE TURTLE

10

Finally, discover what happens if you use minus (negative)
numbers instead of plus (positive) numbers. Try

FD –100

RT –45

I like that. You could do without LEFT and BACK and just
use negative numbers. At the same time. Here’s one last
word for this section, PE. Try this

FORWARD 300 WAIT 120 PE BACK 300

To cancel PE type either PU or PD.

11

SECTION FOUR – TEACHING LOGO NEW TRICKS

Once you feel comfortable with the commands you learnt in
Section 3, FORWARD, BACK, LEFT, RIGHT, PU,
PD, PE, CLEAN, CS, WINDOW, FENCE and
WRAP, you are ready to teach your turtle some very clever
tricks.

Try this one for a start. Type

REPEAT 4 [FD 200 RT 90]

and press the RETURN key. Notice the short forms of the
commands FORWARD (FD) and RIGHT (RT). Would you get
the same effect if you typed

REPEAT 4 [BK 200 LT 90]

Either way, the Turtle draws a square. This is a lot easier
than typing:

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90

FORWARD 200 RIGHT 90

You may be wondering what those square brackets [] mean.
You will see a good deal of them in Logo, so let’s explain
them once and for all.

The brackets [] enclose lists. They can be lists of words,
lists of numbers, or even lists of lists. In this case

REPEAT 4 [FD 200 RT 90]

it is a list of instructions to the Turtle. You can put any
instructions you like inside the brackets []. For example:

REPEAT 5 [FD 100]

It comes to the same thing as

FD 500

or try this

REPEAT 2 [FD 250 LT 120]

Could you change that last command so that the turtle
draws a triangle? REPEAT means just what you expect it to
mean. It REPEATS a list of instructions just as many times
as you want. But lists are used in many other ways. If you
want the computer to print out a sentence or a list of

SECTION FOUR – TEACHING LOGO NEW TRICKS

12

words, you do it like this. Type

PRINT [APPLES PEARS ORANGES]

PRINT [GOOD MORNING]

Now I would like you to leave your computer for a minute,
and find an open space on the floor. Walk in a circle. Try to
think of your actions in turtle steps. Start by walking a
square, repeating the commands to yourself. Unless you are
in the playground, keep the sides fairly short (3 or 4 steps)
as person steps are much bigger than turtle steps.

How could you tell the turtle to draw a circle, using the
REPEAT command? Try to walk in a circle using the
commands FORWARD and RIGHT.

Walk one step FORWARD and turn a little to the RIGHT.
Walk another step FORWARD and turn a little to the RIGHT.
Walk another step . . . and so on.

Now go back to the computer and type

REPEAT ? [FD ? RT ?]

But with numbers instead of question marks. The Turtle will
walk round the screen just as you did on the floor. You may
find that it has only drawn part of a circle. See if you can
complete the circle. Try repeating the instructions more than
20, 30 . . . 100 . . . 150 times. Try telling the turtle to take
bigger steps. Say, FORWARD 5, or turning a little more,
RIGHT 5.

When you have drawn a circle, try drawing bigger circles and
smaller circles.

Use PU and PD to draw circles inside one
another, or draw a face. Remember, you can use CLEAN or
CS to wipe the screen and start a new drawing.

Perhaps you think the Turtle spoils your pictures, and should
disappear when it has finished drawing. Well you can easily
fix that with two more words:

HT for HideTurtle
ST for ShowTurtle

Try them. Type HT, and your Turtle has disappeared. Type
ST and it’s back again. If you give it some instructions while

SECTION FOUR – TEACHING LOGO NEW TRICKS

13

it is hidden, it draws just the same. Try typing

HT REPEAT 36 [FD 10 RT 10] ST

Just play around with the REPEAT command until you feel
really good about it. How long that will take really depends
on how old you are, how much you already know about
computers, and so on.

14

SECTION FIVE – TURTLES CAN REMEMBER

Everything you have learnt so far has been designed to
reduce the number of words you have to type. First you
learned about shorter words. Then you learned to use
REPEAT.

Our motto is: Make the turtle do the work.

Now, imagine teaching the Turtle to remember lists of
instructions, just like the ones we used with REPEAT.

Leave your computer again. Find a piece of paper and a
pencil.

Write at the top of the paper TO SQUARE then underneath,
write

[Take five steps forward and turn right. Repeat this
action three more times. End]

then write TO OPENTHEDOOR

[Walk across the room. Take hold of the door handle;
turn it and pull it towards you. If it opens, stop. If it
does not open, then try pushing it. End]

Give the paper to a friend, and ask her to listen. When you
call out “SQUARE” or “OPENTHEDOOR”, she should follow
the right set of instructions.

I expect you can think of other sets of instructions, which
could be called in this way. ITS-TIME-TO-GET-UP or
RUN!-THE-BUS-IS-COMING or
COULD-YOU-GO-DOWN-TO-THE-SHOP-FOR-ME or
CAN’T-YOU-BLOW-YOUR-NOSE.

In LOGO, you give lists of instructions to the computer, and
each list of instructions has its own name. Let’s see how it
works. Go back to the keyboard and type TO SQUARE,
followed by the RETURN key. The computer will then give
you a new prompt. Instead of the ? at the beginning of the
line, you will see a > . This tells you that the computer is
waiting for its first instruction. You type

> REPEAT 4 [FD 200 RT 90]

just as you did before. Press RETURN and type

> END

SECTION FIVE – TURTLES CAN REMEMBER

15

Press RETURN and the computer will respond

SQUARE DEFINED

Type SQUARE again, and the computer will draw a square.
Move the Turtle to another part of the screen, with

PU RT 45 FD 200 PD

and type SQUARE again. The Turtle has remembered exactly
what to do. It is just like your friend with the sheet of paper
and your instructions. In fact it’s better. Unlike your friend,
the computer never gets tired of daft games. You call
SQUARE and it knows which instructions it has to follow.
They are contained in a list, very similar to the one you
wrote out for your friend.

We call this a procedure . Teaching new procedures to your
computer is what Logo is all about. Some people look
forward to a world in which computers teach children.

At Logotron, we are more interested in children teaching
computers. In fact, the idea of computers teaching children is
quite horrible. Here are some more procedures to teach your
computer:

TO ARC

REPEAT 10 [FD 10 RT 60]

END

TO BEND

REPEAT 2 [FD 50 RT 30]

END

TO ZIGZAG

REPEAT 20 [FD 10 RT 90 FD 10 LT 90]

END

TO SUN

REPEAT ?? [FD 100 BK 100 RT 5]

END

When you copy in the last procedure, you need to put a
number instead of the question marks. Some people say at
this point: “But when do we start programming?” The
answer is that these are programs.

You will see that every procedure begins with TO, and ends
with END. When you want your computer to draw a sun,
you just type SUN.

SECTION FIVE – TURTLES CAN REMEMBER

16

Make sure that each line is just right before you press the
RETURN key. If you do make a mistake, and the procedure
doesn’t work, just type ER and then the name of the
procedure. For example, ER “SUN. ER is short for erase, and
makes the computer forget the list of instructions associated
with the name of the procedure. Remember the quotes (“)
in front of the name. You will learn in Section 6 why they
are needed.

Once the procedure is forgotten, you can type it in again,
without any mistakes.

Perhaps you can think up some procedures of your own.
Anyway, type in the four definitions given above. You will
need them in Section 7. Once they are working, type:

SAVE “XAMPLES [ARC BEND ZIGZAG SUN]

As you will realise, this saves a list of procedures onto your
disk or cassette in a file called XAMPLES. The BBC Micro’s
disk filing system forces us to choose filenames with fewer
than seven letters, which is why I had to chop the first “e”
off examples. When you return to the computer and want to
use these procedures again, put the right disk in the disk
drive (or cassette in the recorder) and type:

LOAD “XAMPLES

and they will be right there, ready for use.

There is one small but important point about procedures.
Their names must consist of a single word. You could not
have TO ZIG ZAG, for example. You must run the words
together to make ZIGZAG. Sometimes people put a full stop
between the words; in this case, it would be ZIG.ZAG. Logo
reads it as one word.

17

SECTION SIX – CHANGING LOGO’S MIND

Those procedures the Turtle has learned are fine. But have
you wondered what you would do if you wanted a bigger
square, or a smaller circle? In the last section you learned
that you sometimes have to put quotes (“) in front of a
word. In this section, you will meet another way of writing
words, with dots (:) in front of them. Before very long we
will explain what they mean, but for the moment, just type
them in without worrying about their meaning. Just type in:

TO NEWSQUARE :SIDE

REPEAT 4 [FORWARD :SIDE RIGHT 90]

END

Then try

NEWSQUARE 100

NEWSQUARE 200

This is a very neat idea. The word :SIDE stands for the
number of steps you want the Turtle to take for each side of
the square. Instead of going FORWARD 100 it goes
FORWARD :SIDE and :SIDE can stand for any number you
please. Try it and see for yourself. Then try to write a set of
instructions for:

TO NEWTRIANGLE :SIDE

To understand just what is happening, you need to learn a
new Logo word, MAKE. Logo uses MAKE to give names to
things .

Type in:

MAKE “SIDE 150

In this case, the NAME is “SIDE and the THING is 150.
Now type

PRINT :SIDE

the computer will respond, 150. Now try

MAKE “SIDE –250

and then again

PRINT :SIDE

The answer, as you might expect, is –250. You don’t have
to call it “SIDE. “LENGTH or “FRED would do just as well.
NAMES can have all kinds of THINGS attached to them, not

SECTION SIX – CHANGING LOGO’S MIND

18

just numbers. Try this:

MAKE “FAMILY [GRANDFATHER GRANDMOTHER MOTHER FATHER AUNT

UNCLE SON DAUGHTER]

And then

PRINT :FAMILY

I am sure you will have noticed that sometimes we write
“SIDE and sometimes :SIDE, sometimes “FAMILY and
sometimes :FAMILY. This can be quite confusing. But when
you are referring to the NAME you use quotes (“), and when
you are referring to the THING, which is attached to the
name, you use dots (:). You may remember in the previous
section, when you wanted the computer to forget a bad
procedure, you typed in ER “SUN. You had to use the
quotes (“) because you were referring to the name of the
procedure, not to the procedure itself. This can be quite a
difficult idea. Think about the difference between you and
your name.

Seymour Papert, the inventor of Logo, uses an old riddle to
explain the difference:

“Mississippi is the longest river in America, how do you spell
it?”

“M-I-S-S-I-S-S-I-P-P-I”
“No I-T”

The riddle works in English because the word “it” could be
standing for itself, a two-letter word, or it could be standing
for the word Mississippi. In Logo, there is no ambiguity.

If Logo saw “IT, it would know you were referring to the
word “it”. If it saw :IT, it would ask itself what other word
it could be referring to and the answer would be Mississippi.

This will become quite easy with practice. When we say
:SIDE we are referring to the number of steps we want the
Turtle to take on each side of the square. When we write
“SIDE, we mean the word SIDE, not its value. So if you
type PRINT “SIDE, the computer will answer SIDE.

Practise this as much as you like until you really understand
how it works. There are really three possibilities that Logo
has to consider when it meets a word which is not enclosed
in square brackets (ie not part of a list).

SECTION SIX – CHANGING LOGO’S MIND

19

a) It has neither quotes (“) nor dots (:) in front of it, and it’s
not a number or a logical value (TRUE or FALSE). In this
case, Logo will treat the word as a procedure or a
primitive procedure. If it cannot find the word in its list of
procedures, Logo complains:
I DON’T KNOW HOW TO

b) It has dots (:) in front of it. Logo tries to evaluate it, to
discover what it stands for. In the case of :SIDE, this was
the length of a line. We’ll meet lots more examples of
different kinds.

c) It has quotes (“) in front of it. Logo will use it as it is, not
as a procedure, and not to be evaluated.

Here are some more examples. Type them in to the
computer and see what happens.

MAKE “SQUARE [REPEAT 4 [FD 100 RT 90]

RUN :SQUARE

MAKE “HEIGHT 30

MAKE “LENGTH 200

MAKE “AREA :HEIGHT ✻ :LENGTH

PRINT :AREA

We will be seeing a good deal more of dots (:) and quotes
(“), so be sure you get the hang of them. If you want more
informnation on this subject, look up Section 23 dealing with
variables . We call these words, which name things,
variables, because you can make them hold all kinds of
different (variable) things.

CAPITAL LETTERS are sometimes called upper case letters,
and small letters are called lower case letters. Logo expects
upper case letters for primitives, procedure names,
variable names, and boolean values , but you can use
upper or lower case in other cases. For example:

MAKE “XNAME “John

PRINT :XNAME

John

MAKE “VERBS [enter eat gallop cry]

PRINT :VERBS

enter eat gallop cry

20

SECTION SEVEN – MAKING MORE CHANGES

In the last section, it would have been nice to have been
able to change the list of instructions associated with the
word SQUARE. We wanted to improve it by adding in the
variable word :SIDE. Since we didn’t know how to change it,
we invented a new procedure TO NEWSQUARE.

We are now going to learn how to change procedures after
they have been defined. If there are no procedures in your
computer’s memory at present, type in the procedures
SQUARE and TRIANGLE.

TO SQUARE

REPEAT 4 [FD 200 RT 90]

END

TO TRIANGLE

REPEAT 3 [FD 200 RT 120]

END

Now type EDIT “SQUARE At the bottom of the screen, you
will see:

LOGO EDITOR
^C <exit> ESC <abort>

and the procedure SQUARE, all ready to be changed, at the
top of the screen.

Before we look at the EDITOR and all the things it can do, I
would like to tell you a little about what is happening inside
your computer.

When you switch it on, Logo takes charge. You read the
message:

WELCOME TO LOGO

?

The question mark (?) asks you to type in your next
instruction. The Logo program looks after the computer’s
memory, and stores the words you teach it. When you type
in words it cannot understand, it complains.

Part of the computer’s memory is kept free for new
procedures you write. This is called your workspace . But
once a procedure is written into that workspace, you cannot
easily change it. It would confuse the computer if you could.

SECTION SEVEN – MAKING MORE CHANGES

21

In order to change a procedure, you have to move it into a
special part of the memory, called the EDITOR. It’s rather
like taking the car to the garage to have it mended.

In the LOGO EDITOR, we provide you with your own set of
tools for fixing or changing your procedures. When you are in
the EDITOR, ordinary LOGO commands do not work. All you
can do is change the words you have written. But as we will
see, that is very, very useful.

Using the right arrow key (:), you can move the cursor to
the end of the first line and type :SIDE. Then drop down to
the next line, with the down arrow key, and use the DELETE
key to rub out the 200. Type in :SIDE instead.

You now have:

TO SQUARE :SIDE

REPEAT 4 [FD :SIDE RT 90]

END

When you are satisfied you have it right, press CTRL C. The
screen will go blank, and the computer will respond.

SQUARE DEFINED

You are now out of the editor, with a new list of instructions
for SQUARE fixed in the computer’s memory. Try SQUARE.
Logo responds:

NOT ENOUGH INPUTS TO SQUARE

SQUARE is now a command which needs an input, the
length of each side. Try SQUARE 100. Let’s look at all the
things we have learnt so far:

1. Some Logo words: FORWARD (FD), BACK (BK), RIGHT
(RT), LEFT (LT), PU (pen up), PD (pen down), PE (pen erase)
HT (hide turtle), ST (showturtle), REPEAT, MAKE, EDIT (ED),
ER (erase), CS (clear screen), CLEAN, WINDOW, WRAP,
FENCE, PRINT (PR), TO, END.

2. How to reach the Turtle new procedures like SQUARE,
TRIANGLE and ZIGZAG.

3. How to make pictures of different :SIZE or :LENGTH, by
attaching a name to a thing .

4. How to change procedures in the LOGO EDITOR. You
will find a special list of all the EDITOR tools in Section

SECTION SEVEN – MAKING MORE CHANGES

22

25. Don’t try to learn them all at once. Just use the ones
you need, the arrow keys and DELETE.

5. The way Logo uses square brackets [] to enclose lists ,
quotes (“) to indicate names , and dots (:) to indicate
named things .

You really know a good deal about LOGO now. The
important thing is to feel comfortable with the ideas we have
met so far. This may take a different amount of time for
different people. But take your time. If you understand these
ideas, you will get on well.

If you are still puzzled about any of it, put the manual away,
and look at it again tomorrow, or even next week. Then
work through the first sections again. They may well seem
easier. Or find someone else who wants to talk about Logo.
Two heads are usually better than one when it comes to
talking turtle and teaching computers.

23

SECTION EIGHT – MAKING PICTURES

In the first part of this manual, we have been learning how
to use Logo, with very simple shapes, like SQUARE, CIRCLE
and TRIANGLE.

The procedures which tell the Turtle to draw these shapes
are quite short and simple.

We are now going to look at some different shapes, and you
may want to save these on a disk or cassette, so that you
don’t have to type them in each time.

This means two more Logo words SAVE and LOAD. We will
assume SQUARE :SIDE is already in the computer’s
memory. If it isn’t, go back to the last section and type it in.
Make sure it works. If it doesn’t, EDIT “SQUARE and get it
just right. Now type:

SAVE “SHAPE “SQUARE

There will then be a gentle whirring sound as the computer
saves the procedure SQUARE on a cassette or a disk, under
the filename SHAPE. The filename comes first. Remember,
the BBC disk filing system does not allow you to use
filenames with more than 7 letters. If you called your file
SAMANTHA for example, you would receive the Logo
message, BAD FILE NAME.

When you have saved SQUARE. Type ER “SQUARE. You
know that this makes the computer forget the procedure
SQUARE. Check that it really has forgotten by typing
SQUARE 100. The computer answers

I DON’T KNOW HOW TO SQUARE

Now type LOAD “SHAPE. This time, you use the filename
alone. There is more gentle whirring, and when the ?
reappears, type SQUARE 100. The Turtle does its stuff and
draws a square. That’s all there is to SAVE and LOAD.

Now let’s go straight into the EDITOR by typing EDIT [].
You are in the LOGO EDITOR. it says so at the bottom of
the screen. But there is no procedure for you to work on.
You can just type one in. If you had typed EDIT alone,
without the square brackets, you would have found the last
procedure edited still on the screen.

Many people prefer to build their procedures inside the

SECTION EIGHT – MAKING PICTURES

24

LOGO EDITOR. Then they can change them around, and
correct typing mistakes, without worrying about the RETURN
key fixing a line in the computer’s memory. When you are
typing inside LOGO EDITOR, nothing is fixed until you press
CTRL C. If you don’t like the changes you have made, just
press the ESCAPE key, and you are out of the EDITOR
without making any changes to the procedures in your
workspace.

So let’s try building a procedure inside the LOGO EDITOR. It
is a very famous one, familiar to readers of Seymour
Papert’s book Mindstorms. Here it is:

TO HOUSE :SIDE

SQUARE :SIDE

TRIANGLE :SIDE

END

Then press CTRL C and wait for the computer to say
HOUSE DEFINED. Now this is quite different from the other
procedures we have seen. If you now type HOUSE 100, the
Turtle first draws a SQUARE, with 100 steps to each :SIDE,
and then a TRIANGLE, also with 100 steps to each :SIDE.

Of course, if the procedures SQUARE and TRIANGLE are not
in the computer’s memory, it will complain:

I DON’T KNOW HOW TO SQUARE

or

I DONT KNOW HOW TO TRIANGLE

Silly beast. Can’t it remember anything? Well, it can
remember, so long as it hasn’t been told to forget (ER) or it
hasn’t been switched off. If any of these things have
happened, LOAD the file containing “SQUARE and/or
“TRIANGLE from your disk or cassette. And try HOUSE 200
again.

My idea was that the square would be the bottom part of
the HOUSE and the triangle would be the roof. It hasn’t
quite worked out. Never mind, we can fix it in the LOGO
EDITOR, the garage for broken down procedures. Type EDIT
or even ED. You should now be in the LOGO EDITOR, with
the definition of HOUSE just as you left it.

Before we change it, let’s think what happened. Get a pencil
and paper, and imagine the pencil is the Turtle.

SECTION EIGHT – MAKING PICTURES

25

You draw a line running up the page, 200 turtle steps. Turn
right, and another line, also 200 steps. Another line down the
page, and another line back to where you started. That’s
SQUARE taken care of. Now for TRIANGLE.

You go up the page again (200 steps), retracing your first
line, then turn 120 degrees to the right (that’s more than a
right angle), and draw another line; RIGHT 120 again, and
back to where you started.

Now, if you could start the triangle in the top left-hand
corner of the square, instead of the bottom left-hand corner,
it might be more like a roof. So let’s use the arrow key to
go to the end of the line SQUARE :SIDE. Press the RETURN
key and you will be ready to type FD :SIDE. The procedure
should now look like this:

TO HOUSE :SIDE

SQUARE :SIDE

FD :SIDE

TRIANGLE :SIDE

END

Press CTRL C and try it again. HOUSE 200. It’s still not very
good. The triangle isn’t sitting on the house as a good roof
should. Let’s EDIT “HOUSE again. This time, we will tell the
Turtle to change direction before drawing the triangle.

I am not going to tell you how much. You see if you can
discover for yourself what number to type in where I have
left two question marks ??.

TO HOUSE :SIDE

SQUARE :SIDE

FD :SIDE

RT ??

TRIANGLE :SIDE

END

NB. HOUSE won’t work unless you do type in a number
instead of the ?? question marks.

Now press CTRL C to leave the EDITOR and try HOUSE
200. Well, I am sure you could draw a better house with a
pencil and paper, and very soon you will teach the Turtle to
make a better effort, with procedures called DOOR,
WINDOW, CHIMNEY, and SMOKE.

SECTION EIGHT – MAKING PICTURES

26

If you think you could do that already, then by all means try.
That might give you ideas for bigger houses, factories or
churches. But why buildings? Try drawing faces, (HEAD,
NOSE, MOUTH, RT.EYE LT.EYE) or aeroplanes and rockets
(WING FIN NOSE TAIL BODY).

Play with gluing shapes together in a single procedure, which
combines other procedures. You will see that you often have
to put in extra commands, as we did with HOUSE, to get
the effect you want.

SQUARE, CIRCLE, TRIANGLE, ZIGZAG and SUN should give
you plenty of ideas, but we will give you some more
powerful tools in the next sections, to make more exciting
shapes. This might be a good time to look at the other ways
you can use the EDITOR, in Section 25.

The best way to make pictures is to keep changing your
procedures, see how they work, and then look for little ways
in which you can make them better. Its sometimes worth
keeping the old one, and giving the new version a slightly
different name. For example, you might decide that you had
a better way of drawing a sun:

TO SUN1 :RAY

REPEAT 72 [FORWARD :RAY LEFT 5 BACK :RAY RIGHT 10]

END

Can you now think of a way to turn TO SUN1 into TO
SUNFLOWER with TO STALK, TO LEAF, TO SEEDS and so
on?

27

SECTION NINE – TURTLE ARITHMETIC

Most people know that computers are very handy for doing
arithmetic. If you have ever seen a pocket calculator, you will
understand this very easily. A pocket calculator is a small
computer, specially designed to do arithmetic very quickly.

Try the Turtle out on some easy sums. Type PRINT 3 + 4.
Quick as a flash, you get the answer 7. Let’s see what
would have happened if you had simply typed 3 + 4. Try it.
The computer will respond:

YOU DON’T SAY WHAT TO DO WITH 7

This is very important. In LOGO you are the boss. The Turtle
doesn’t do anything or know anything, unless you tell it or
teach it. If you type PRINT in front of a calculation, the
computer prints it onto the screen. If you had a printer it
would print the result onto the paper. But you don’t always
want the result printed on the screen. Often you want the
calculations to be used inside a procedure.

If you have never used a computer before, you may be
surprised to learn that they don’t use quite the same
symbols for multiplication and division, as those you learned
at school. Plus (+) and minus (–) are just the same, but
instead of × for multiply, computers generally use ✻, and for
divide, they use /. So:

3 ✻ 4 = 12

2.5 ✻ 2 = 5

6 / 3 = 2

12.5 / 2.5 = 5

It takes a bit of time to get accustomed to the new symbols
when you first meet them. But, just make sure they work
for you by typing PRINT 48 / 8. Or PRINT 9 ✻ 7. Or any
other sum you can think of. You can, of course, use
decimals, and type

PRINT 345.9876 ✻ 200.0001234

Let’s look at how we might use arithmetic to buid more
interesting procedures. Type

MAKE “SIDE 100

then, when you see the ? again, type

PRINT :SIDE / 2

The computer sees the dots : and knows you are talking

SECTION NINE – TURTLE ARITHMETIC

28

about the value associated with the name “SIDE, and so
divides 100 by 2, and gives you the answer 50. Let’s use
this idea to write a new procedure called BOX. You
can build it inside the EDITOR, typing EDIT first, or just type
it straight into the memory.

TO BOX :SIDE

FD :SIDE / 2

RT 90

FD :SIDE

RT 90

FD :SIDE / 2

RT 90

FD :SIDE

END

Try it out, with BOX 200. Can you think of a way of
shortening that procedure using the REPEAT command?

You could then improve BOX with another procedure called
LID.

TO LID :SIDE

REPEAT 2 [FD :SIDE / 6 RT 90 FD :SIDE RT 90]

END

You then modify BOX in the EDITOR to read:

TO BOX :SIDE

FD :SIDE / 2

LID :SIDE

RT 90

FD :SIDE

RT 90

FD :SIDE / 2

RT 90

FD :SIDE

END

Then type BOX 300. The next project might be to draw a
group of BOXES. The procedure might look like this:

TO BOXES :SIDE

BOX :SIDE

MOVE :SIDE

BOX :SIDE ✻ 2

MOVE :SIDE

BOX SIDE / 2

END

SECTION NINE – TURTLE ARITHMETIC

29

You have to work out how to write the procedure MOVE.
The clue is to use PU when you are moving the Turtle
without leaving a trail. Remember to SAVE any procedures
you would like to keep on to a disk or cassette before
switching off the computer.

If you have several procedures to save you can put them in
a list, which saves time. For example you could type:

SAVE “SHAPES [BOX BOXES SQUARE HOUSE TRIANGLE]

This would save the listed procedures under the filename
SHAPES. LOAD “SHAPES and they would all be loaded from
disk, back into the workspace. if you had typed just SAVE
“SHAPES, without any names of procedures, Logo would
have saved everything into the workspace in the file named
SHAPES.

Logo’s ability to do arithmetic can be useful in many ways.
Perhaps you have a lot of sums. This procedure might help:

TO CALCULATE :SUM

PRINT :SUM

END

CALCULATE [12 ✻ 4]

CALCULATE [3 + 3 + 17 + 19]

CALCULATE [12 / 16 ✻ 100]

CALCULATE [(3 + 4) ✻ (9 – 2)]

There are better ways of using Logo as a calculator, but that
will do for the present (see RUN in Section 26).

30

SECTION TEN – TURTLES EAT TURTLES

If you have any procedures in the memory of your computer,
SAVE them and then empty its memory. You do this by
typing ERALL. It means erase all, or “forget everything I ever
told you.” Then try this little procedure:

TO CIRCLE

FD 10 RT 5

CIRCLE

END

Now try it, by typing CIRCLE. You will find the Turtle goes
round and round for ever. Forward a little bit, right a little bit,
and then CIRCLE again. Forward a little bit, right a little bit.
You can stop it by pressing the ESCAPE key.

STOPPED!!! IN CIRCLE

This may not look very useful at first sight, a procedure
which never stops. It is also quite confusing. Like standing
between two mirrors and looking into one of them and
seeing a reflection of a reflection of a reflection . . . and so
on (for ever?).

Procedures which call themselves in this way are recursive
procedures . Here are some more to play with. Remember,
the only way to stop them, is to press the ESCAPE key.
Otherwise, they go on for ever.

TO SQUARE :SIDE

FD :SIDE RT 90

SQUARE :SIDE

END

TO TALLY :N

PRINT :N

TALLY :N + 1

END

NB to use TALLY, you must type TALLY with a number for
:N. TALLY 1, for example.

TO SQUIGGLE

FD RANDOM 50 RT RANDOM 360

SQUIGGLE

END

RANDOM is another Logo word. It chooses any number
between 0 and the number following RANDOM. So
RANDOM 5, chooses 0, 1, 2, 3, or 4.

SECTION TEN – TURTLES EAT TURTLES

31

It’s easy to see that we need to find some way of
controlling these recursive procedures . Turtles should never
be running out of control.

Let’s look again at our recursive procedure for drawing a
square. Type EDIT “SQUARE

TO SQUARE :SIDE

FD :SIDE RT 90

SQUARE :SIDE

END

Change this procedure as follows:

TO SQUARE :SIDE :BRAKE

PR SE [BRAKE =] :BRAKE

IF :BRAKE = 0 [STOP]

FD :SIDE RT 90

SQUARE :SIDE :BRAKE – 1

END

Press CTRL C and try out SQUARE 300 4.

NOTE: SQUARE 200 5 might have come in rather handy
when we were drawing our HOUSE.

Now let’s look at another procedure, very similar to
SQUARE:

TO SPIRAL :SIDE

FD :SIDE RT 90

SPIRAL :SIDE – 5

END

Before you try it out on the computer, why not try walking it
on the floor or the lawn. Every :SIDE is a little bit shorter
than the one before. So you never quite complete the
square. That’s why it’s called SPIRAL.

Try SPIRAL 300. The procedure is still never-ending, but
perhaps you can see how recursion might come in handy.
Now edit SPIRAL to read as follows:

TO SPIRAL :SIDE

IF :SIDE < 10 [STOP]

FD :SIDE RT 90

SPIRAL :SIDE – 5

HT

END

This time, if you try SPIRAL 300 again, the procedure comes
to an end. The key lies in the second line. Every time the

SECTION TEN – TURTLES EAT TURTLES

32

procedure calls SPIRAL, the value of :SIDE is reduced by 5.
The second line tells the computer that IF that value is less
than 10, it should look for its next instruction in the square
brackets [], and there it is told to STOP.

There are several new Logo words and ideas here, especially
if this is your first time on a computer. Let’s start with the
easiest. STOP means just what you would expect. It tells the
computer to STOP whatever it is doing and get on with the
next procedure, if there is one.

IF is a useful word in most computer languages.

IF suchandsuch THEN do thisandthat.

In Logo, you don’t have to write THEN, you just put the
instructions (do thisandthat) in a list, enclosed in square
brackets [], just as you would for REPEAT.

You know what an equals = sign looks like, but you may
not have met the signs meaning greater than > or
less than <.

Let’s practise using them for a minute. Type:

If 3 < 4 [PRINT [THREE IS LESS THAN FOUR]]

Note the second set of square brackets, one nested inside
the other [[]]. The first, or outer, set are controlled by the IF,
while the second, or inner, set are controlled by PRINT. You
can have any number of brackets nested inside one another
[[[[]]]]. What you must avoid is [[]]][, for example:

IF 4 > 3 [PRINT] FOUR IS GREATER THAN THREE]]

Type MAKE “SIDE 100. Type:

IF :SIDE = 100 [PRINT “OKAY]

Now make up some more of your own. If you want further
details, look in the reference sections of this manual. One
thing to notice. If you want the computer to print out a
single word, like okay, you use the quotes “ symbol, as in:

PRINT “OKAY

If you want it to print out more than one word, put them
into a list, inside square brackets:

PRINT [HOW ARE YOU TODAY]

There are other ways of stopping a recursive procedure,
without using the word STOP. Look at SPIRAL again, and

SECTION TEN – TURTLES EAT TURTLES

33

change it once more to:

TO SPIRAL :SIDE

FD :SIDE RT 90

IF :SIDE > 10 [SPIRAL :SIDE – 5]

HT

END

Here the brakes are in the third line, but we have turned the
idea round. If the value of :SIDE is greater than 10, then we
go ahead and call SPIRAL again. IF NOT we move on to
Hide the Turtle and END the procedure.

Another method, where you know how many times you
want to call the procedure is to introduce a second input,
which we could call :COUNTER, or any other name that
takes your fancy, like :METER or :NUMBER or just :N. The
important thing is to give it a name which means something
to you. SPIRAL would then appear as follows:

TO SPIRAL :SIDE :COUNTER

FD :SIDE RT 90

IF :COUNTER > 0 [SPIRAL :SIDE – 5 :COUNTER – 1]

HT

END

When the :COUNTER reaches 0, the procedure ENDS. Try it
by typing SPIRAL 300 12. You can, of course, change
SPIRAL by making :SIDE increase on each call. You would
then start with a small value in :SIDE and change your
stopping mechanism to put the brakes on before the value
of :SIDE outgrows the screen.

A good example of recursion is the old story of the fairy
who offered a child two wishes, anything she liked to
choose. I don’t know what her first wish was, but her
second was to be granted just two wishes, anything she
liked to choose

34

SECTION ELEVEN – TURTLE COLOURS

That last section was fairly tough. We looked at some
recursive procedures, and ways of stopping them from going
on and on and on and on

We haven’t said anything about Colour. Well, some people
don’t have colour. They are stuck with a single colour. But if
you are lucky enough to have a colour monitor or a colour
TV for your computer, you should certainly experiment with
two more Logo words.

By the way, the words Logo already knows when you turn
on your machine are known as primitives . This is short for
primitive procedures. If this seems a funny word, the Shorter
Oxford English Dictionary tells us that a “primitive word” is a
root word, from which another or others are derived. The
Latin word primitivus meant the first or earliest of its kind. If
you type in PRIMITIVES, Logo responds by printing out a list
of all its primitive procedures.

Before you start experimenting with colour, it is worth
switching your computer into the MODE which has the most
colour possibilities. You do this in the following way. First
SAVE any procedures you might want again.

The simplest way to do this is to save the whole workspace,
by typing: SAVE “WORK8. Logo will create a file (on disk or
cassette) called WORK8. The file can have any name you
like. If you are sharing the disk with other people, your own
name might be a good filename. SAVE “ANNA9. The
numbers are not necessary, but they can be helpful if you
want to keep a series of files with similar names.
Remember, the BBC puts a limit of 7 letters on filenames.
“WEDNESDAY’S.WORK would be much too long, and you
would receive a Logo message:

BAD FILE NAME

Having saved your work, type ERALL. This makes Logo
forget all the procedures in its workspace. Then type:

SETMODE 2

This takes you into the BBC Micro’s MODE 2. The primitives
which handle colour are SETPC :N and SETBG :N. In each
case :N is a number.

If you are like me, and find it difficult to remember numbers,

SECTION ELEVEN – TURTLE COLOURS

35

you can make your own procedures as follows:

TO REDPEN

SETPC 1

END

TO BLUEPEN

SETPC 4

END

TO REDPAPER

SETBG 1

END

TO YELLOWPAPER

SETBG 3

END

Try them out, to see how they work. You can also write
procedures, which help you remember the colours and the
numbers. Try this:

TO COLOURS

CS

SETBG 0

REPEAT 15 [SETBG BG + 1 SETCURSOR [10 12] PR SE [BG =] BG

WAIT 60]

END

Don’t worry about how it works, just type it in and then
type: COLOURS and see what happens. While we are
playing with colours, let’s look at another primitive, .SETNIB,
which allows you to do a number of interesting things. Try
.SETNIB 85 SQUARE or .SETNIB 21 FD 300. For more about
.SETNIB, check the reference in Section 21. Note the dot in
front of .SETNIB.

If you are familiar with the BBC machine, but not with Logo,
you may have learnt about the VDU commands. If you have,
you will be pleased to find that you can use VDU as a Logo
primitive. As you might expect, VDU looks for its numbers in
the form of a list enclosed in square brackets [].

If you haven’t heard of VDU commands, don’t worry about
them. When you feel ready to learn about them, either ask
someone, or read the BBC User Guide. The important thing
to remember is that they are available from Logo, just like all
the other powerful features of your BBC Computer.

SECTION ELEVEN – TURTLE COLOURS

36

As you probably know, the BBC Computer can be in any of
8 MODES .When you enter Logo, you are in MODE 4. Type
PRINT MODE and the computer will reply 4.

The command SETMODE :N, where :N is a number from
0-7 will put you in a new mode. In MODE 2, you can have
up to 16 different colour combinations on the screen at the
same time.

0 = BLACK
1 = RED
2 = GREEN
3 = YELLOW
4 = BLUE
5 = MAGENTA
6 = CYAN
7 = WHITE
8 = FLASHING WHITE-BLACK
9 = FLASHING RED-CYAN
10 = FLASHING GREEN-MAGENTA
11 = FLASHING YELLOW-BLUE
12 = FLASHING BLUE-YELLOW
13 = FLASHING MAGENTA-GREEN
14 = FLASHING CYAN-RED
15 = FLASHING BLACK-WHITE

In MODE 7, too, you can use all the colour combinations,
but these are obtained in a different way. See the section
dealing with VDU commands for a full explanation, or plunge
into the BBC User Guide, but you need a fairly strong
stomach to sort out the information you want.

In MODES 1 or 5, you are restricted to 4 colours, but you
can choose which four you want. The default colours, set
when you turn on your computer, are

0 = BLACK
1 = RED
2 = YELLOW
3 = WHITE

Your choice is made through a VDU command. If you want
to know all the details, look at page 382 in your BBC User

SECTION ELEVEN – TURTLE COLOURS

37

Guide. But here is a useful procedure:

TO SETPAL :A :B

MAKE “A (SE 19 :A :B 0 0 0)

VDU :A

END

The first input (:A) is the number of the colour you want to
replace, and the second (:B) is the number of the colour you
want to introduce. For example SETPAL 1 4, in MODE 5,
would replace red with blue. The best way to experiment
with colour is to go back over the earlier material, look at
your procedures again, and see how they might work, in
colour.

In MODES 0, 3 , 4 and 6, you have only two colours. These
are set as

0 = BLACK
1 = WHITE

when you switch on your computer, but they, too, can be
changed through application of the right combinations of VDU
commands (Use SETPAL if you like). The VDU driver system
is quite foreign to the Logo philosophy. We have to put up
with it because it is part of the BBC computer hardware.

WARNING: The different MODES use up different amounts
of your computer memory. You’ll find more about this in the
Reference Manual. But here are some helpful hints.

You can always discover how much memory you have for
storing procedures by typing PRINT NODES. Logo organises
its memory in NODES, each of which is equivalent to 5
bytes. But you needn’t worry about that.

The most nodes are available in MODE 7, the least number
in MODES 0, 1 and 2. There are no Turtle graphics in MODE
7, but it can be very useful for some other applications.

You can discover for yourself, by changing modes with
SETMODE :N and then typing PR NODES. If you change
modes, with a procedure in the computer’s memory, you will
get a different result from changing modes without a
procedure in the memory. Check this out for yourself.

So if you want to get extra memory, changing, for example,

SECTION ELEVEN – TURTLE COLOURS

38

from MODE 2 to MODE 5, or from MODE 3 to MODE 7, be
sure to SAVE your procedures, and type ERALL before
changing modes with SETMODE :N. It sounds complicated,
but if you play around with it for a little, it will seem much
clearer. You will find more information on all this in the
reference part of this manual, in Section 29.

39

SECTION TWELVE – MORE ABOUT PICTURES

In the first sections of this manual, we have concentrated on
very simple shapes. I wanted the younger children to be able
to follow this part of the book , and assumed the older ones
would gallop through it in a few hours. The next few
sections are aimed at older readers, or anyone who feels
completely comfortable with the ideas we have introduced so
far.

This might be a good moment to read the first sections of
the reference manual, especially the introductory section on
Logo Grammar, and the sections on Turtle Graphics and the
Editor.

I would then like you to look at one of the most famous
turtle graphics procedures:

TO POLYTRIP :SIDE :ANGLE :ANGLES

FD :SIDE RT :ANGLE

MAKE “ANGLES :ANGLES + :ANGLE

PR SE [:ANGLES =] :ANGLES

PR [DO YOU WANT TO ADD ANOTHER SIDE? Y/N]

MAKE “ANSWER RC

IF :ANSWER = “Y [POLYTRIP :SIDE :ANGLE :ANGLES]

HT

END

This procedure introduces several new LOGO words and
ideas. You can either look up SE and RC in the reference
manual, or just accept them on trust for the moment. The
idea of this procedure is to learn something important about
polygons and turtle graphics.

Now type

POLYTRIP 200 90 0

if you type in Y on the first three occasions you are asked
whether you want to add another side, you will find you
have completed a SQUARE, and :ANGLES, which is the sum
of all the Turtle’s turns, will equal 360.

CLEAN the screen and try again with:

POLYTRIP 100 72 0

This time, you will need to add four sides, before completing
a polygon, but the sum of the Turtle’s turns will still be 360.

SECTION TWELVE – MORE ABOUT PICTURES

40

Now look for other regular Polygons, changing the first two
inputs. Keep the third one always a zero. Some of the
angles you choose won’t produce a regular polygon. Instead
of returning to your starting point, the lines will cross. But if
you do return to your starting point without crossing a line,
you will find that :ANGLES always equals 360. Some
POLYTRIPS,

POLYTRIP 100 144 0

for example, will take you back to your starting point, but
cross several lines on the way. :ANGLES equals 720, which
is exactly twice 360.

Playing with POLYTRIP will help you understand the next
procedure:

TO POLY :SIDE :NUMSIDES

REPEAT :NUMSIDES [FD :SIDE RT 360 / :NUMSIDES]

END

This procedure allows you to draw a triangle, a square, a
pentagon, a hexagon, an octagon, or any other regular
convex polygon. You just tell it the :NUMber of SIDES you
want, and the computer calulates the angle the turtle has to
turn at each corner. It just divides 360 by :NUMSIDES.

Another way of writing the same procedure would be:

TO POLY1 :SIDE :ANGLE

REPEAT 360 / :ANGLE [FD:SIDE RT :ANGLE]

END

One method isn’t “better” than another, just different. I
prefer the first method, when I know that I want to draw a
hexagon or an octagon, because I can never remember what
the turning angle should be. On the other hand, if I wanted
to explore the effect of different turning angles, POLY1
would be better.

Do you remember how we developed SPIRAL out of
SQUARE? Well, you can do just the same with POLY, and
it’s often called POLYSPI:

TO POLYSPI :SIDE :ANGLE

FD :SIDE RT :ANGLE

POLYSPI :SIDE + 1 :ANGLE

END

We will leave you to play with POLYSPI. Remember,
you need to put in a brake line, to halt the procedure

SECTION TWELVE – MORE ABOUT PICTURES

41

(see Section 10 if you have forgotten how that is
done). You can make :SIDE grow or shrink. You can make
:ANGLE grow or shrink if you like. There’s plenty of room
for experiments. We will leave you to explore
POLYSPI. Other weird and wonderful shapes can be
generated by taking a simple shape, and then rotating it and
repeating it. Look at this for example.

TO SQUARES1 :SIDE

REPEAT 36 [SQUARE :SIDE RT 10]

END

You want to make it more complicated?

TO SQUARES2 :SIDE

REPEAT 36 [SQUARE :SIDE RT 5 SQUARE :SIDE / 2 RT 5]

END

Or change the definition of SQUARE to:

TO SQUARE1 :SIDE

FD SIDE

CIRCLE

RT 90

REPEAT 3 [FD :SIDE RT 90]

END

Then try SQUARES1 again.

Add some colour with

SQUARES3 :SIDE

REPEAT 36 [SETPC PC + 1 :SQUARE :SIDE RT 10]

END

I hope you have been collecting useful procedures on a disk
or cassette as you have worked through this introduction. A
Logo programmer soon acquires a whole library of useful
procedures, which can be used over and over again.

42

SECTION THIRTEEN – MOVING TURTLES

Before leaving turtlegraphics, I would like to look at the ways
we have of moving the Turtle around the screen.

Using just 2 numbers, you can always describe the position
of the Turtle on the screen. These numbers are called its X
and Y coordinates, or XCOR and YCOR. Imagine the X line
going from side to side and the Y line going up and down.

This is a very old idea, and you may have met it in maths at
school, or reading map references. We are told the idea
originated with a Frenchman, Rene Descartes, more than 300
years ago. He had the idea, while lying ill in bed, looking at
flies walking around on the ceiling of his room. He saw that
with two numbers he could always describe the position of a
fly.

The mid-point of the screen is 0 on both lines. Points to the
left, on the X line, are negative, with a minus sign, and
points to the right are positive, with a plus sign. Points
above the mid point are positive on the Y line, and points
below are negative.

Type the following

PU SETX -200

PD SETY -250

CLEAN

PU SETX 280 SETY 200

PRINT YCOR

PRINT XCOR

This should give you a good feeling for moving the Turtle
around the screen. You will see that if the PEN is DOWN,
the Turtle will draw lines. This might give you an idea for
another method of drawing a square.

TO SQUARE :SIDE

SETX XCOR + :SIDE

SETY YCOR – :SIDE

SETX XCOR – :SIDE

SETY YCOR + :SIDE

END

Try it. I don’t much like it myself, but it’s very fast, much

SECTION THIRTEEN – MOVING TURTLES

43

faster than the normal Logo way of drawing a square, and
gives you a good sense of the meanings of four new Logo
words SETX, SETY, XCOR and YCOR.

You can see for yourself that if you know the value of XCOR
and YCOR, you know the position of the TURTLE.

The Logo word for this is POS. Type

CS FD 100 PRINT POS

The Turtle will draw a line 100 steps forward from the
centre of the screen, and print below: 0 100.

The XCOR is unchanged at 0, while YCOR is now 100. In
printing POS, the XCOR is always given first. Equally, if you
want to set the Turtle down in a new position, you give the
XCOR first.

The Logo word for this last operation is, as you might guess,
SETPOS. SETPOS takes a list of two numbers, as follows:
SETPOS [100 -35]. If you don’t want the Turtle to draw a
line on its way to its new POS, be sure to type PU first.
Try:

CLEAN PU SETPOS [-250 35]

I often use a procedure called MOVETO, which moves the
Turtle to a determined point on the screen without leaving a
trail.

TO MOVETO :X :Y

PU

SETX :X

SETY :Y

PD

END

Another way of writing MOVETO:

TO MOVETO :X :Y

PU SETPOS SE :X :Y PD

END

SETPOS needs the values of :X and :Y in a list, and that’s
what SE does. If you wrote SETPOS [:X :Y], Logo would
complain:

SETPOS DOESN’T LIKE [:X :Y] AS INPUT

Once something is in a list, LOGO treats it quite literally and
doesn’t look for its value. This makes SE a valuable word.

SECTION THIRTEEN – MOVING TURTLES

44

MOVETO can be used, for example, to sprinkle stars across
the screen.

TO STAR

POLY 30 144 0

END

TO STARS

REPEAT 50 [STAR MOVETO (RANDOM 300 – 300) (RANDOM 300 – 300)]

END

While considering the problem of moving the Turtle about
the screen, we should look at another pair of Logo words,
HEADING and SETH (which is short for SETHEADING).

The Turtle’s HEADING is the direction in which it is pointed.
If you type FD 100, it will set off in the direction of its
HEADING.

Try typing SETH 45 SETH 100 SETH 180. Then type

SETH RANDOM 360 PRINT HEADING

if you experiment with these last two instructions, you will
soon discover that the Turtle measures its HEADING in
degrees. 0 is straight up the screen, and 180 is straight
down.

I hope you understood what RANDOM is doing. I used it
previously in SQUIGGLE. If you have any doubt, look it up in
the reference manual. RANDOM is a very useful word as is
allows you to break away from straight lines and stiff
geometrical shapes. Perhaps you will find uses for this
procedure, which can be used instead of FORWARD

TO WIGGLE :STEPS

MAKE “H :HEADING

REPEAT :STEPS [SETH (:H + 5 – RANDOM 10)]

SETH :H

END

It can make drawings look a lot more natural.

45

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

Quite a lot of Logo manuals get to this point and then leave
the readers to find their own way. They are taught Turtle
graphics, which are the easiest part of Logo to understand,
and have to pick up the rest from reference manuals.

We are taking a rather different approach. There is still plenty
for you to discover on your own about Turtle graphics. You
will find a good bit more in the reference manual. Four very
good books are:

Apple Logo, By Harold Abelson, BYTE/McGraw Hill.
Although this is about Apple Logo, not BBC Logo, the
commands are almost identical, and his programs work even
better on the BBC Micro than they do on an Apple II. There
are two versions of this book, one with a red cover, the
other blue. Be sure to get the BLUE one.

LOGO Programming by Peter Ross, Addison Wesley,
Small Computer Series. His programs need more changes
than Abelson’s. But his book is full of good ideas.

Turtle Geometry, by Andy DiSessa and Harold Abelson,
MIT Press, is the most complete book of Turtle Graphics,
but don’t buy it unless you are really keen, and willing to
work rather hard. It is most suitable for ‘A’ level students,
university undergraduates and teachers. But it is also a
fascinating source of ideas for anyone seriously interested in
Logo programming.

Learning with Logo, by Daniel Watt, McGraw-Hill Book
Company, is very popular with many teachers.

So we will leave Turtle graphics for the time being, though
we include some sample programs later in this manual.

In fact, you can make Turtles or Turtle graphics in any
computer language. Before Logo was available on the BBC,
there were several turtle graphics programs, which you may
have seen.

Lists make Logo special, and different from other languages.
We already met some lists in the first part of this manual. In
particular, we met lists of instructions, enclosed in square
brackets [] after words like REPEAT. But there were other

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

46

lists. In case you have forgotten, type:

MAKE “ALPHABET

[A B C D E F G H I J K L M N O P Q R S T U V W X Y Z]

I am choosing this one because it is a list you should know
well. Type:

PRINT COUNT :ALPHABET

Did you get the answer you expected? Try:

PRINT ITEM 4 :ALPHABET

PRINT FIRST :ALPHABET

PRINT LAST :ALPHABET

PRINT BF :ALPHABET

PRINT BL :ALPHABET

BF and BL stand for But First and But Last, respectively. In
each case, make sure you understand what is happening to
the list we named “ALPHABET. We could have given it any
other name. Type:

MAKE “ABC :ALPHABET

Now type: PRINT :ABC. So there is nothing to stop you
giving a list a new name.

The first thing to do is to make some more lists, and to
teach the computer their names. Try the following:

MAKE “FAMILY [GRANDPARENT MOTHER FATHER AUNT UNCLE BROTHER

SISTER CHILD]

PRINT ITEM 3 :FAMILY

Did it behave as you expected?

MAKE “TREES [ELM OAK ASH HOLLY THORN MAPLE]

MAKE “MUSIC [ROCK DANCE REGGAE POP RADIO2 LATINAMERICAN

CLASSICAL GUITAR]

Try out the words FIRST, ITEM, LAST, COUNT, BF,
and BL on these lists, using PRINT statements. When
you feel comfortable, try combining members of two lists
into a new list, using SE. SE is short for SENTENCE and it
creates a list out of two or more inputs. If there are more
than two, you have to put SE, with its inputs inside
parentheses (). For example

MAKE “FRUITS (SE “APPPLES “PEARS “ORANGES “LEMONS)

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

47

Then type

SHOW :FRUITS

The Logo word SHOW is different from PRINT in that it
shows you a list with the square brackets [] in place. PRINT
strips them off. In order to combine elements from two lists
into a third list, try the following:

MAKE “NEWLIST SE FIRST :FAMILY LAST :FRUITS

SHOW :NEWLIST

This should show you:

[GRANDPARENTS LEMONS]

Let’s now look at the possibility of adding elements to lists
we have already named. Type:

MAKE “FRUITS FPUT “PINEAPPLES :FRUITS

PRINT :FRUITS

MAKE “FRUITS LPUT “MANGOS :FRUITS

PRINT :FRUITS

MAKE “FRUITS BUTFIRST :FRUITS

PRINT :FRUITS

MAKE “ALPHABET BUTFIRST BUTFIRST :ALPHABET

PRINT :ALPHABET

Now put “A and “B back at the beginning of :ALPHABET.
This looks quite simple, but out of these very simple ideas,
computer scientists have built incredibly complex programs.

We are going to look first at some very simple things you
can do with lists. In another section, we have provided some
more advanced procedures, which you can use. But first,
let’s look at a very simple example given by Harold Abelson
in the book mentioned above.

TO CHATTER

MAKE “NOUNS [DOGS CATS CHILDREN TIGERS]

MAKE “VERBS [RUN BITE TALK LAUGH]

BABBLE

END

TO BABBLE

PRINT SE PICKRANDOM :NOUNS PICKRANDOM :VERBS

BABBLE

END

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

48

In order to make these procedures work, you need another
one called:

TO PICKRANDOM :X

OP ITEM 1 + (RANDOM COUNT :X) :X

END

Now try CHATTER. It goes on for ever, so you will have to
stop it with the ESCAPE key. Harold Abelson provides many
ideas for extending the chatter program, so that it stops
itself, and learns new words.

The PICKRANDOM procedure may puzzle you, so look at it
carefully. The :X is always a list. You can use it on any of
the lists we have made in this section. Try:

PRINT PICKRANDOM :FRUITS

or

PRINT PICKRANDOM :ABC

So you can see what PICKRANDOM does. The second line
may give you more trouble:

OP ITEM 1 + (RANDOM COUNT :X) :X

This word OP is a new Logo word, standing for OutPut. It
simply passes the result of the procedure in which it appears
back to the procedure which called it. Demonstrations are
always better than explanations.

EDIT “PICKRANDOM so that it reads:

TO PICKRANDOM :X

PRINT ITEM 1 + (RANDOM COUNT :X) :X

END

Press CTRL C to leave the EDITOR. Now try

PRINT PICKRANDOM :FRUITS

You will get a Logo message saying:

PICKRANDOM DIDN’T OUTPUT TO PRINT

Then try

PICKRANDOM :FRUITS

which should work perfectly.

The problem the first time was that the PRINT command
was expecting PICKRANDOM to tell it what to PRINT. Your
new PICKRANDOM is fine if all you ever want to do is use
it directly to print a RANDOM ITEM from a list, but no good
at all if you want to use PICKRANDOM in a program.

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

49

This idea of OUTPUT is very important. We met it before, in
a different guise, when you typed 3 + 4, and Logo sent a
message saying:

YOU DON’T SAY WHAT TO DO WITH 7

So you typed

PRINT 3 + 4

The same would happen if you typed COUNT :ABC. You
would receive the Logo message:

YOU DON’T SAY WHAT TO DO WITH 26

COUNT outputs a value. The Logo word OP allows you
to create new Logo words, like PICKRANDOM which
OUTPUT results, and expect to be told what to do with
them.

This is another example of Logo putting you in charge. Let’s
go back to that troublesome, but interesting second line of
PICKRANDOM:

OP ITEM 1 + (RANDOM COUNT :X) :X

Let’s work backwards from the right. That’s what Logo is
doing. First it finds :X, it makes sure that :X is in its
memory as a list. Let’s imagine that you have typed in
PRINT PICKRANDOM :ABC. So in this case, :X stands for
:ABC and we know that “ABC contains the 26 letters of the
alphabet.

It then goes back to deal with COUNT :X. That’s easy. It
OUTPUTS 26 back to RANDOM. RANDOM 26 produces a
random number between 0 and 25. Since we wouldn’t want
ITEM 0, we add 1 to what ever number it chooses.

This number in turn is OUTPUT to ITEM. Let us imagine the
random number was 6, add 1, makes 7. So we have:

OP ITEM 7 :ABC

Since the 7th letter of the alphabet is G, PICKRANDOM
:ABC OUTPUTS G to PRINT, and G is what appears on your
screen. The same kind of logic is at work in:

TO DICE

OP 1 + RANDOM 6

END

Try PRINT DICE a few times, and you will soon see that you
have the equivalent of throwing a six-sided dice.

SECTION FOURTEEN – AFTER TURTLE GRAPHICS

50

Every Logo procedure, including the primitive procedures, is
either a command or an operation. This is one of the most
important single ideas you need to understand when learning
the Logo language. There’s more about it in the first
reference section of the manual.

An operation outputs a Logo object (a word, a number, or a
list).

A command does not output a Logo object. in order to see
the difference, it might help you to think of some pairs of
Logo primitives:

Command Operation
SETH HEADING
SETMODE MODE
SETPOS POS
SETPC PC
SETBG BG
SETCURSOR CURSOR

In the left-hand column you have primitives which require
inputs; they then use these inputs to carry out your
instructions. On the left are words you can use to discover
the state of Logo or the state of the turtle. They output
values for your information. You will find more about this in
Section 21.

51

SECTION FIFTEEN – BACK TO FRONT

A rather more complicated example of the kind of Logo word
you can create yourself, using lists, is provided by REVERSE
X. Perhaps you can imagine what REVERSE does. PRINT
REVERSE :ABC churns out the alphabet backwards.

REVERSE, like PICKRANDOM, is not a word you find in Logo
to begin with. It’s not a primitive procedure. You have to
make it. See whether you think it is a command or an
operation.

TO REVERSE :LIST

IF :LIST = [] [OP []]

OP SE REVERSE BF :LIST FIRST :LIST

END

Try it out on

PRINT REVERSE :TREES

Let’s see if we can understand why it works. We are back
with the recursive ideas we explored in Turtle graphics. All
the work is done in the third line. First look at :TREES [ELM
OAK ASH HOLLY THORN MAPLE]. One way of folowing this
procedure through its steps would be as follows:

PRINT REVERSE :TREES
LIST = [ELM OAK ASH HOLLY THORN MAPLE]
LIST = [OAK ASH HOLLY THORN MAPLE]
LIST = [ASH HOLLY THORN MAPLE]
LIST = [HOLLY THORN MAPLE]
LIST = [THORN MAPLE]
LIST = [MAPLE]
LIST = []
REVERSE OUTPUTS [MAPLE] TO REVERSE
REVERSE OUTPUTS [MAPLE THORN] TO REVERSE
REVERSE OUTPUTS [MAPLE THORN HOLLY] TO

REVERSE
REVERSE OUTPUTS [MAPLE THORN HOLLY ASH] TO

REVERSE
[REVERSE OUTPUTS [MAPLE THORN HOLLY ASH OAK] TO

REVERSE
REVERSE OUTPUTS [MAPLE THORN HOLLY ASH OAK

ELM] TO REVERSE
REVERSE OUTPUTS [MAPLE THORN HOLLY ASH OAK

ELM] TO PRINT

MAPLE THORN HOLLY ASH OAK ELM

SECTION FIFTEEN – BACK TO FRONT

52

Until successive calls to REVERSE have emptied the LIST (in
this case TREES), Logo can’t get on with the business of
building up the new list, in REVERSE order.

Look at that third line again:

OP SE REVERSE BF :LIST FIRST :LIST

SE has two inputs (REVERSE BF :LIST) and (FIRST :LIST),
which it has to combine into a single list.

The second of these is easy to understand. FIRST :LIST is
ELM. But what do we do about REVERSE BF :LIST. Well
the program is telling the computer to do the same thing all
over again to BF :LIST. In other words, the :LIST
without its FIRST ITEM.

Once it gets down to an EMPTY :LIST, we put on the
brakes by making it output an EMPTY :LIST, which we show
as [], square brackets with nothing in them. At that time, the
procedure OUTPUTS all the words it has been stacking up in
REVERSE order.

You will almost certainly have to play with this for some
time before you understand how it works.

PRINT REVERSE :TREES

produced

MAPLE THORN HOLLY ASH OAK ELM

But wouldn’t it be nice to have another possibility: PRINT
REVERSEALL :TREES and produce ELPAM NROHT YLLOH
HSA KOA MLE. Well, it isn’t difficult. We need another
procedure to reverse the letters in a word:

TO REV :WD

IF :WD = “ [OP “]

OP WORD REV BF :WD FIRST :WD

END

This is virtually the same as REVERSE :LIST. The only
difference is that we are dealing with words instead of lists.
The empty word is written “ , while the empty list, as we
have seen, is []. WORD works rather like SE, but instead of
gluing its inputs together to make a LIST, it makes a WORD.
Try

PRINT (WORD “O “K “A “Y)

The inputs to WORD must be words, not lists. Single letters

SECTION FIFTEEN – BACK TO FRONT

53

and numbers are counted as words by Logo. So:

TO REVERSEALL :X

IF :X = [] [OP []]

OP SE REVERSEALL BF :X REV FIRST :X

END

By the time you have worked out how to reverse lists, and
put them back together again, you will really know a good
deal about Logo. You should also have worked out that
REVERSE is an operation, which receives a list as input and
OUTPUTS another list (a Logo object).

Here’s a procedure which will reverse words and lists, words
or lists.

TO REV :OBJECT

IF EMPTY? :OBJECT [OP “]

IF LIST? :OBJECT [OP SE REV LAST :OBJECT REV BL :OBJECT]

IF WORD? :OBJECT [OP WORD LAST :OBJECT REV BL :OBJECT

END

54

SECTION SIXTEEN – MORE ABOUT NUMBERS

As we said in our Introduction,
we don’t expect everyone to read the whole of this manual.
It has quite deliberately introduced and used more difficult
ideas and examples as we have progressed.

We are now going to talk about the way Logo does
arithmetic. We should say again that Logo regards numbers
as special kinds of words. If a word is a number, it doesn’t
have to be preceded by quotes, but if you want to write
“24, Logo won’t protest.

As you know, if we want to add two numbers together, we
usually write: :FIRSTNUM + :SECONDNUM. For example 3
+ 4, but we might say ADD 3 and 4. In the first example,
the plus sign comes between the words we want to add
together. In the second example, the word ADD comes first,
followed by the numbers we want to ADD. Logo, too, has
two different ways of doing arithmetic. Try the following to
discover how it works:

PRINT SUM 4 3

PRINT SUM 4 -3

PRINT (SUM 4 5 6)

PRINT 4 + 3

PRINT 4 – 3

PRINT 4 + 5 + 6

PRINT 4 ✻ 5

PRINT 3 ✻ 2

PRINT PROD 3 2

PRINT 5 / 2

IF EQUAL? 3 3 [PRINT “OKAY]

IF 3 = 3 [PRINT “OKAY]

The technical terms for these different ways of writing
arithmetic are “infix ” and “prefix ”. Words like SUM,
PROD, QUOT are known as “prefix operations ”
because they precede the numbers they operate on, whereas
symbols like ✻, +, /, >, = and so on are known as “infix
operations ” because they are placed in between the
numbers the operate on. Like all other Logo operations, the

SECTION SIXTEEN – MORE ABOUT NUMBERS

55

arithmetical operations output Logo objects, in this case
numbers.

Some people use postfix operations, (eg 3 4 +) but Logo
does not, and we won’t worry about them here. Computers
like to work along a line, from right to left, or left to right,
without having to go back on their tracks, so they prefer
prefix or postfix operations.

Because most people grow up at present learning maths the
infix way (3 + 4), Logo offers both prefix and infix
operations. But this can lead to trouble. In order to sort out
the infix and prefix operations, Logo deals with all the
infix operations first, in a strict order of priority.
Division, multiplication, subtraction, addition,
equality/inequality.

Logo does protest if you try the following:

IF COUNT :ABC = 26 [PRINT “OKAY]

Provided you still have the list “ABC in your computer
memory, you receive a mysterious Logo message, saying

IF DOESN’T LIKE 5 AS INPUT

This is a good one to try on people, who think they know
something about Logo.

The Logo interpreter works from right to left. It starts with
the list of instructions [PRINT “OKAY], then finds 26 and the
= sign. Ah, = is an infix operation which takes two inputs.
So it first looks to see if there are any more arithmetical
operations to be evaluated; finding that there aren’t, it
compares :ABC and 26. Clearly they are not equal, so it
OUTPUTS the word FALSE back to COUNT. COUNT counts
the letters in FALSE, one two . . . five, and OUTPUTS 5 to
IF. Logo is now faced with:

IF 5 [PRINT “OKAY]

Since the word IF always looks for a condition which is
either TRUE or FALSE, it is totally baffled and says:

IF DOESN’T LIKE 5 AS INPUT

There are various ways of writing the line so as not to
confuse Logo. Here are three:

IF (COUNT :ABC) = 26 [PRINT “OKAY]

IF 26 = COUNT :ABC [PRINT “OKAY]

IF EQUAL? COUNT :ABC 26 [PRINT “OKAY]

SECTION SIXTEEN – MORE ABOUT NUMBERS

56

Looking at them one by one. The first puts parentheses ()
round COUNT :ABC. You have probably come across this
use of () at school. You have to evaluate whatever is inside
the parentheses first. You then use the result for the rest of
the calculation. Putting () round COUNT :ABC means that
the compter calculates this to be 26 before comparing the
two inputs to =.

The second solution simply switches the COUNT :ABC and
the 26, so that the Logo interpreter meets COUNT :ABC
before it meets the arithmetical operator =.

The third solution uses the prefix operator EQUAL? so that
by the time the interpreter reaches that point, it has two
inputs ready, 26 and 26, so IF receives EQUAL? 26 26, to
which it answers TRUE and therefore goes ahead and prints
OKAY.

I think that exploring this example will save you a deal of
time and trouble later on. You will find that the three infix
operations dealing with equality (=) and inequality (< >) can
give you similar problems. The simple rule for dealing with
these problems is:
If there is an expression to be evaluated (eg COUNT :X
or ITEM 3 :X) to the left of the infix operations (= < or >)
that expression should be enclosed in parentheses. This
is not wholly consistent, but it stems from the
simultaneous management of infix and prefix operations.
Try changing the following examples to make them work
properly (see also Sections 20 of this manual).

IF COUNT :ABC < 20 [PRINT “OKAY][PRINT [NO WAY]]

IF ITEM 5 :ABC = “E [PRINT “OKAY][PRINT [NO WAY]]

IF ITEM 5 :ABC = “Z [PRINT “OKAY][PRINT [NO WAY]]

We haven’t met the second set of square brackets before.
One way of picturing their meaning is as follows:
IF condition is TRUE, THEN [do this] ELSE [do that].
What it means is that if the condition tested by IF outputs
false, the second list of instructions is followed instead of
the first list.

57

SECTION SEVENTEEN – FOR TEACHERS

Many people will have read about the use of Logo with very
young children, or with children who have severe difficulties
in reading.

It is quite possible to make turtle graphics accessible to
children who cannot read or write, and have never used a
keyboard, using only four keys of the computer. Look at
these procedures:

TO ERNS

ER OPNS

END

TO SETUP

ERNS

MAKE “F [FD 30]

MAKE “B [BK 30]

MAKE “R [RT 15]

MAKE “L [LT 15]

MAKE “H [HT]

MAKE “S [ST]

MAKE “U [PU]

MAKE “D [PD]

MAKE “C [CS]

MAKE “Q [TOPLEVEL]

END

TO SIMPLIFY

MAKE “KEY RC

IF NOT NAME? :KEY [SIMPLIFY]

RUN THING :KEY

SIMPLIFY

END

The word which does all the work is RC. This stands for
READCHARACTER. Whatever key is pressed next becomes
:KEY. Then if :KEY corresponds to any of the 10 global
variables created by setup, Logo runs the THING
corresponding to that variable. Spot the difference between
THING “KEY and THING :KEY. If the KEY chosen is not one
of those listed, SIMPLIFY waits for the next key press.

This can be made easier for children by marking the active
keys with coloured labels, or arrows. It doesn’t matter which
keys you choose to operate the system. You can choose

SECTION SEVENTEEN – FOR TEACHERS

58

fewer or more keys, depending on the ability of the child. At
its most simple, you could have just two keys, one to move
the turtle FORWARD, and another to turn it RIGHT. SETUP
can be modified in any way you choose. The command
ERNS clears the system of any oother global variables which
may be lurking about. If you are working with a fresh Logo,
it is not needed.

The SIMPLIFY procedure is recursive and keeps the whole
system going, indefinitely.

The SIMPLIFY system can be used in two ways by teachers.
The first is to give very young children access to the
computer. The second use, with older children, is to invite
them to find ways of improving the system. Obvious
extensions are RUBOUT, which allows a child to cancel its
last command. Modify the SETUP procedure as follows:

TO SETUP

ERNS

MAKE “F [REMEMER [FD 30] FD 30]

MAKE “B [REMEMBER [BK 30] BK 30]

MAKE “R [REMEMBER [RT 15] RT 15]

MAKE “L [REMEMBER [LT 15] LT 15]

MAKE “P [RUBOUT]

MAKE “Q [TOPLEVEL]

END

And add two new procedures:

TO REMEMBER :ACTION

MAKE “HISTORY :ACTION

END

TO RUBOUT

IF EQUAL? FIRST :HISTORY “FD [PE BK 20 PD]

IF EQUAL? FIRST :HISTORY “BK [PE FD 20 PD]

IF EQUAL? FIRST :HISTORY “RT [LT 30]

IF EQUAL? FIRST :HISTORY “LT [RT 30]

END

Another use of SIMPLIFY will be found in the discussion of
VDU commands in the section 28).

Another aid developed by teachers at MIT and Edinburgh,
when working with children with special needs, was to
switch on a DRIBBLE file, which recorded every keystroke
made by the child. This often provided the teachers with
clues as to the problems they were encountering with the

SECTION SEVENTEEN – FOR TEACHERS

59

computer, and provided the basis for developing a remedial strategy.

Our LOGO does not include DRIBBLE as a primitive because
this is provided by the BBC Computer’s operating system as
✻SPOOL.

Check the way this is used in your BBC User Guide. It has
been hard to decide how much reference should be made in
this manual to the BBC Operating System. We have decided
to concentrate on Logo, and the special features of the
language. But do remember that all features of the BBC
Operating System are open to users of Logotron’s Logo.

For further details concerning the use of operating system
commands, see Sections 20 (p.96) and 28 (p. 147).

These can be built into procedures and provided for children
directly, to be used as if they were primitives, without worrying
about the complexities of the operating system. Some rules have
to be followed as such programs are creating an interface
between two very different environments: Logo and the
programs which make up the BBC micro’s powerful operating system.

There will be teachers, particularly in secondary schools, who
will be looking for ways to put extra intellectual challenge
into Turtle graphics. We would suggest they begin to
experiment with movement.

The first experiment involves a procedure callled:

TO MOVE :STEP

FD :STEP

IF KEY? [MAKE “STEP RC]

MOVE :STEP

END

Start with MOVE 0, then see what happens when you press
the number keys. Watch the turtle accelerate, and slow
down to a stop when you press 0. Build on this with:

TO MOVE1 :STEP :INC

STROBE

FD :STEP

MOVE1 :STEP + :INC :INC

END

TO STROBE

PD FD 0 PU

END

SECTION SEVENTEEN – FOR TEACHERS

60

A French logophile, Alain Texier, has built on these simple
beginnings to simulate bouncing balls, falling stones, billiards,
and other moving objects. He calls it Logomotion, and there
is plenty of room for imaginitive exploration of this particular
idea.

Many teachers will be concerned that the BREAK key can
easily be depressed accidentally, especially by very young or
disabled children. The BREAK key has the effect of wiping all
procedures and variable names from the workspace and from
the Editor. This can be very discouraging.

There is no programmable solution. The circuit design of the
BBC Micro does not allow us to disable the BREAK key. The
best we can suggest is to cut out a length of cardboard,
0.25 inches wide and two inches long. Fold it three times
into the shape of a W. Take the top off the computer and
wedge the card behind and under the BREAK key, so that it
cannot be pressed.

There is no disadvantage to this, so long as you are using
Logo. If you still need the BREAK key for any reason, the
best way of resetting the machine is to turn off the power
and then turn it on again. It may seem a crude solution, but
we believe it will be necessary in some environments, as the
BREAK key is set so close to F9.

It has not proved possible to include a number of long forms
of commands. For example, Logotron Logo only offers HT,
instead of HIDETURTLE, or BG instead of BACKGROUND. If
for any reason teachers feel children need the long form, it
is the easiest thing in the world to construct the long from
the short form. For example:

TO HIDETURTLE

HT

END

TO BACKGROUND

OP BG

END

61

SECTION EIGHTEEN – LIST PROCESSING

Mike Sharples, until recently a member of the Department of
Artificial Intelligence at Edinburgh University and now at the
University of Sussex, has spent a good deal of time studying
the difficulties children encounter when they try to move
from turtle graphics to other kinds of programming. In
particular he has studied problems involving the use of
language.

He writes in a recent paper: “Attempts by members of this
department to teach list processing to children and adults
have not been successful. Learners who enjoyed and profited
from turtle geometry were bored and confused by lists.”

Sharples suggests that if newcomers to programming are to
discover the utility of list processing, they need to be
provided with a toolkit, which goes beyond the list handling
primitives found in Logo: – LIST SE WORD LPUT
FPUT BF BL ITEM COUNT FIRST and LAST.

We have already met these primitives in this manual, but we
would not expect that a reader would yet be able to do
anything very exciting with them.

Sharples has given permission for us to describe two
elements of a possible list processing toolkit for beginners.
These are not programs to be studied by the beginner, so
much as used.

We would expect teachers or parents to provide them ready
made, on disk to be loaded by children and used to create
projects.

The first of Mike Sharples’ tools for list processing is a
Phrasebook. His Phrasebook can be used to contain any
information a child might want to look up: questions and
answers; words and synonyms; English phrases and their
foreign equivalents; Logo words and their definitions. The
same set of programs can be used instead of the SIMPLIFY
program described above in Section 17.

Only three commands are needed to operate the
phrasebook: TEACH, FIND and REMOVE. TEACH adds an
entry to the book. It accepts either words or lists as inputs.

SECTION EIGHTEEN – LIST PROCESSING

62

TEACH “CAT “CHAT

CAT CHAT

TEACH [THE DOG] [LE CHIEN]

CAT CHAT

THE DOG LE CHIEN

Sharples has endeavoured to remain as close as possible to
the spirit of turtle graphics in creating his Phrasebook. The
child “teaches” the computer. With every addition to the
Phrasebook, its full contents are shown to the child. If this
becomes wearisome, it can easily be changed.

FIND, as you would expect, allows the user to write FIND
[THE DOG], and be answered LE CHIEN.

The third command, FORGET, deletes an entry. FORGET
[CAT]. The user is then shown the remaining entries, DOG
LE CHIEN.

Even in this elementary form, the Phrasebook provides an
introduction to reference aids and to the techniques of table
loook-up and pattern matching. For example, the child might
be given a core dictionary or thesaurus which she could
extend:

FIND “SAD

UNHAPPY, MOROSE, MELANCHOLY, DEPRESSING, UNFORTUNATE

FIND “WILD

WILD IS NOT IN THE PHRASEBOOK

TEACH “WILD [UNTAMED, SAVAGE, UNRULY, BOISTEROUS]

With the additional command FOREVER, a child can easily
produce quizzes or “conversations”:

TEACH [WHAT IS THE CAPITAL OF FRANCE?] “PARIS

TEACH “HELLO [HI THERE]

FOREVER [FIND RL]

HELLO

HI THERE

WHAT IS THE CAPITAL OF FRANCE

PARIS

“Wild cards” or “jokers” for pattern matching a simple, but
powerful extensions to the Phrasebook. A single question
mark – ? – matches any single word; a double question
mark – ?? – matches a series of words; a question mark,

SECTION EIGHTEEN – LIST PROCESSING

63

followed by one or more letters, ?X for example, matches a
single word and assigns it to a variable (in this case to X);
two question marks followed by one or more letters,
??PHRASE for example, matches and assigns a series of
words. The following examples show how this facility could
be used.

TEACH [?? MY ?X HURTS ??] [YOUR X? LOOKS VERY PAINFUL]

TEACH [MY ?X LIKES ??Y] [TELL YOUR ?X TO STOP ??Y AND TAKE UP

DANCING INSTEAD]

FOREVER [FIND RL]

DOCTOR, MY KNEE HURTS A LOT

YOUR KNEE LOOKS VERY PAINFUL

MY CAT LIKES PROGRAMMING COMPUTERS

TELL YOUR CAT TO STOP PROGRAMMING COMPUTERS AND TAKE UP

DANCING INSTEAD

Children will soon find new ways of using Phrasebook.

TEACH “SQUARE [REPEAT 4 [FD 200 RT 90]

FIND will execute the commands as well as printing them.
This allows you to use Phrasebook instead of SIMPLIFY,
described in the last section.

TEACH “Y [FD 20]

TEACH “B [BK 20]

TEACH “F [LT 30]

TEACH “K [RT 30]

FOREVER [FIND RC]

NB. Neither Mike Sharples nor the authors of this manual
believe that computerised quizzes of the type described are a
useful way of teaching children geography, or any other
subject. The learning will happen because the child is
teaching the computer. The child asks the computer to give
it the name of the Capital of France. The computer “knows”
the answer if it has been properly “taught”.

Here are the procedures you need to create the Phrasebook.
Just enter them throught the EDITOR, SAVE them and make
sure they work as we describe.

SECTION EIGHTEEN – LIST PROCESSING

64

Phrasebook

TO FOREVER :PROCLIST

RUN :PROCLIST

FOREVER :PROCLIST

END

TO TEACH :ENTRY :DEFINITION

MAKE “PHRASEBOOK INSERT :ENTRY

:DEFINITION “PHRASEBOOK

PHRASEBOOK

END

TO INSERT :ENTRY :DEFINITION :BOOKNAME

IF WORD? :ENTRY [MAKE “ENTRY FPUT

:ENTRY []]

IF WORD? :DEFINITION [MAKE “DEFINITION

FPUT :DEFINITION []]

OP LPUT LIST :ENTRY :DEFINITION

THING :BOOKNAME

END

TO MANY :PHRASE :NEXTMATCH :VARIABLE :MATCHBIT

IF EMPTY? :NEXTMATCH [MAKE :VARIABLE

:PHRASE OP []]

IF EMPTY? :PHRASE [OP []]

IF EQUAL? FIRST :PHRASE FIRST

:NEXTMATCH [MAKE :VARIABLE :MATCHBIT

OP :PHRASE]

OP MANY BF :PHRASE :NEXTMATCH

:VARIABLE LPUT FIRST :PHRASE

:MATCHBIT

END

TO DISPLAY :BOOK

IF EMPTY? :BOOK [STOP]

IF (COUNT FIRST FIRST :BOOK) > 5 [PRINT

FIRST FIRST :BOOK] [TYPE FIRST

FIRST :BOOK]

REPEAT 6 [TYPE “]

PRINT FIRST BF FIRST :BOOK

DISPLAY BF :BOOK

END

SECTION EIGHTEEN – LIST PROCESSING

65

TO FIND :ENTRY

PRINT “

PRINT LOOKUP :ENTRY :PHRASEBOOK

PRINT “

END

TO FILL :RESPONSE

IF EMPTY? :RESPONSE [OP []]

IF OR EMPTY? BF FIRST :RESPONSE NOT

EQUAL? FIRST FIRST :RESPONSE “?

[OP FPUT FIRST :RESPONSE FILL

BF :RESPONSE]

MAKE “WHAT BF FIRST :RESPONSE

IF AND EQUAL? FIRST :WHAT “? NOT EMPTY?

BF :WHAT [MAKE “WHAT BF :WHAT]

OP SENTENCE THING :WHAT FILL

BF :RESPONSE

END

TO CHECK :PHRASE :ENTRY

MAKE “WHAT FIRST :ENTRY

IF EMPTY? BF :WHAT [OP BF :PHRASE]

MAKE “WHAT BF :WHAT

IF NOT EQUAL? FIRST :WHAT “? [MAKE

:WHAT FIRST :PHRASE OP BF

:PHRASE]

OP MANY :PHRASE BF :ENTRY BF

:WHAT []

END

TO MATCHES? :PHRASE :ENTRY

IF AND EMPTY? :PHRASE EMPTY? :ENTRY

[OP “TRUE]

IF EMPTY? :ENTRY [OP “FALSE]

IF AND EMPTY? :PHRASE ?P FIRST :ENTRY

[OP “FALSE]

IF EQUAL? “? FIRST FIRST :ENTRY [OP

MATCHES? CHECK :PHRASE :ENTRY BF

:ENTRY]

IF EMPTY? :PHRASE [OP “FALSE]

IF EQUAL? FIRST :PHRASE FIRST :ENTRY

[OP MATCHES? BF :PHRASE BF

:ENTRY]

OP “FALSE

END

SECTION EIGHTEEN – LIST PROCESSING

66

TO ?P :WORD

IF NOT EQUAL? FIRST :WORD “? [OP

“FALSE]

MAKE “WORD BF :WORD

IF EMPTY? :WORD [OP “TRUE]

IF EQUAL? FIRST :WORD “? [OP

“FALSE]

OP “TRUE

END

TO DO :ALIST

IF AND DEFINED? FIRST :ALIST NOT

MEMBER? FIRST :ALIST [IF NOT AND OR

WORD SE] [RUN :ALIST]

OP :ALIST

END

TO LOOKUP :ENTRY :BOOK

IF WORD? :ENTRY [MAKE “ENTRY FPUT

:ENTRY []]

IF EMPTY? :BOOK [PRINT SE :ENTRY

[IS NOT IN THE PHRASEBOOK]

OP []]

IF MATCHES? :ENTRY FIRST FIRST :BOOK

[OP DO FILL FIRST BF FIRST

:BOOK] [OP LOOKUP :ENTRY BF

:BOOK]

END

TO FETCH :ENTRY

OUTPUT LOOKUP :ENTRY :PHRASEBOOK

END

TO DEL :ENTRY :BOOK

IF EMPTY? :BOOK [PRINT SE :ENTRY

[IS NOT IN THE PHRASEBOOK] OP

:BOOK]

IF EQUAL? :ENTRY FIRST FIRST :BOOK

[OP BF :BOOK] [OP SE

FPUT FIRST :BOOK [] DEL :ENTRY BF

:BOOK]

END

SECTION EIGHTEEN – LIST PROCESSING

67

TO DELETE :ENTRY :DIC

IF WORD? :ENTRY [MAKE “ENTRY FPUT

:ENTRY []]

OP DEL :ENTRY :DIC

END

TO FORGET :ENTRY

MAKE “PHRASEBOOK DELETE :ENTRY

:PHRASEBOOK

PRINT “

PHRASEBOOK

END

TO PHRASEBOOK

DISPLAY :PHRASEBOOK

END

Note Before using PHRASEBOOK for the first time, you
need one further procedure:

TO SETUP

MAKE “PHRASEBOOK []

END

Once you have a working Phrasebook, with contents, you
will not need SETUP, unless you want to wipe out its entire
repertoire.

Boxes

The second model offered by Sharples is the box. It is
simply a computer model of a physical box, labelled with a
single word name and holding an assortment of paper slips,
each bearing a string of one or more words. Any of these
words may be the names of other boxes and, together, a
group of boxes can be used to build a more complicated
structure.

The command PUT adds a new word or list of words to a
particular box. Suppose we had four boxes: Nounphrase;
Article; Noun; Adjective.

PUT “CAT “NOUN

NOUN

CAT

SECTION EIGHTEEN – LIST PROCESSING

68

PUT “DOG “NOUN

NOUN

CAT

DOG

PUT [ARTICLE NOUN] “NOUNPHRASE

NOUNPHRASE

ARTICLE NOUN

The command CREATE scans the word pattern given as its
input (enclosed in square brackets) and replaces every box
name with a word or word list taken, at random, out of the
box in question. This may be another box name. The
scanning is repeated until no box name remains. For
example. Suppose our boxes are filled as follows:

NOUNPHRASE

ARTICLE NOUN

ARTICLE ADJECTIVE NOUN

ARTICLE

A

THE

NOUN

CAT

DOG

HEN

MOUSE

FOX

VERB

CHASES

EATS

ESCAPES FROM

ADJECTIVE

FURRY

GINGER

ANGRY

FRIGHTENED

TERRIFIED

Now we might enter (if you want to try this out, you will
have to type in Sharples’s procedures):

CREATE [NOUNPHRASE VERB NOUNPHRASE]

the first time through, CREATE might substitute

ARTICLE NOUN EATS ARTICLE ADJECTIVE NOUN

SECTION EIGHTEEN – LIST PROCESSING

69

Looking again, there is a new round of substitution to
produce:

A FOX EATS THE TERRIFIED HEN
PUT can also be used to create a new box. For example,
working still with our existing set of boxes, and

PUT [NOUNPHRASE VERB NOUNPHRASE] “SENTENCE

CREATE [SENTENCE]

would now be enough to achieve the same effect as the
previous example.

FOREVER [CREATE RL]

can be used to eliminate the need to type CREATE [] every
time.

Mike Sharples has used boxes to generate poetry:

PUT [LINE1 & LINE2 & LINE3] “HAIKU

The ampersnd (&) is interpreted as a Carriage Return, or a
call for a new line.

PUT [ADJECTIVE ADJECTIVE NOUN VERB] “LINE1

and so on. If you want limericks, or poems with rhyming
patterns, you have to create suitable boxes.

The command REMOVE deletes a box and its contents.

Boxes
Here are the procedures needed to create BOXES:

TO ADDTOVOCAB :APART :AWORD

IF NOT MEMBER? :APART :BOXES [MAKE

“BOXES LPUT :APART :BOXES MAKE

:APART LPUT :AWORD [] STOP]

IF NOT MEMBER? :AWORD THING :APART

[MAKE :APART LPUT :AWORD THING

:APART]

END

TO CHOOSE :PART

IF NOT MEMBER? :PART :BOXES [OP

LIST :PART “]

MAKE “PARTVAL THING :PART

OP ITEM (RANDOM COUNT :PARTVAL) + 1

:PARTVAL

END

SECTION EIGHTEEN – LIST PROCESSING

70

TO INPUT :PATBIT

MAKE “PATBIT LIST :PATBIT

MAKE “INWORD ASK :PATBIT

IF EMPTY? :INWORD [OP :PATBIT]

IF NOT EQUAL? :PATBIT :INWORD

[ADDTOVOCAB FIRST :PATBIT :INWORD]

OP :INWORD

END

TO LOOKAT :PATBIT

IF EQUAL? FIRST :PATBIT “£ [MAKE

“CHOICE INPUT BF :PATBIT] [MAKE

“CHOICE CHOOSE :PATBIT]

IF EQUAL? FIRST :CHOICE :PATBIT [OP

FIRST :CHOICE] [OP SCAN :CHOICE]

END

TO ASK :THEPROMPT

TYPE :THEPROMPT

TYPE “:

TYPE “

OP RL

END

TO ADDWORDS

MAKE “INWORDS ASK [WORDS]

OP IF EMPTY? :INWORDS [[]] [FPUT

:INWORDS ADDWORDS]

END

TO PUT :LINWORDS :WPART

IF OR EMPTY? :LINWORDS EMPTY? :WPART

[STOP]

IF WORD? :LINWORDS [MAKE “LINWORDS FPUT

:LINWORDS []]

IF LIST? :WPART [PRINT [YOU MUST GIVE A

WORD AS THE BOX NAME] STOP]

IF NOT MEMBER? :WPART :BOXES [MAKE

“BOXES LPUT :WPART :BOXES MAKE :WPART []]

MAKE :WPART LPUT :LINWORDS THING :WPART

CONTENTS THING :WPART

END

SECTION EIGHTEEN – LIST PROCESSING

71

TO CONTENTS :LINBOX

IF EMPTY? :LINBOX [STOP]

PRINT FIRST :LINBOX

CONTENTS BF :LINBOX

END

TO CREATE :PATTERN

MAKE “LASTONE :PATTERN

PPRINT SCAN :PATTERN

END

TO AGAIN

PRINT :LASTONE

PRINT “

PRINT CREATE :LASTONE

END

TO SCAN :PATTERN

IF EMPTY? :PATTERN [OP []]

OP SE LOOKAT FIRST :PATTERN

SCAN BF :PATTERN

END

TO GET :PATTERN

MAKE “LASTONE :PATTERN

OP SCAN :PATTERN

END

TO REMOVE :WPART

IF NOT EQUAL? :WPART

[] [MAKE “BOXES DELETE :WPART

:BOXES]

END

TO PPRINT :LIST

IF EMPTY? :LIST [PRINT [] STOP]

IF EQUAL? FIRST :LIST “& [PRINT []]

[TYPE FIRST :LIST TYPE “]

PPRINT BF :LIST

END

TO BOXES

PRINT :BOXES

END

TO FOREVER :LIST

RUN :LIST

FOREVER :LIST

END

SECTION EIGHTEEN – LIST PROCESSING

72

TO DELETE :ELEMENT :LIST

IF EMPTY? :LIST [PRINT [THAT IS NOT THE

NAME OF A BOX] OP :LIST]

IF EQUAL? FIRST :LIST :ELEMENT [OP

BF :LIST]

OP FPUT FIRST :LIST DELETE :ELEMENT

BF :LIST

END

“Phrasebook” and “Boxes” are quite new additions to the
world of Logo. There is plenty of scope to experiment with
them.

Once you thoroughly understand how to use them, then you
may feel ready to pull them to bits, or build extensions.

But do remember, that Phrasebook and Boxes are included
in this manual, not as sample programs, but rather as parts
of a toolkit for working with Logo.

73

SECTION NINETEEN – TOOLKIT

This section is just what it says, a toolkit. Procedures are
provided for a variety of uses. They are set out without
comment. They can be used in two ways. If you are already
familiar with programming in other languages, or already have
a good deal of experience with Logo, they are just a sampler
of ways Logo can be used on the BBC micro.

Alternatively they can be provided as tools for less
experienced programmers, who want to extend their range.
They could have particular application for teachers using Logo
in a Secondary school, where many students may be
converting from BASIC.

For example, even though Logo procedures are generally
much easier to read than BASIC programs, they may feel
lost without REM statements. Here is the procedure they
need:

TO REM :REMARK

END

As you can see, it does absolutely nothing, but it does allow
them to put in REM statements without confusing the
computer.

REM [THIS PROCEDURE DRAWS A SQUARE!]

Sets
The next set of procedures deal with sets, and are rather
more useful, allowing you to return the intersection or union
of two sets, or to discover if one set is a subset of another.

TO EQUAL :A :B

IF WORD? :A [OP :A = :B]

IF WORD? :B [OP “FALSE]

IF SUBSET :A :B [OP SUBSET :B :A]

OP “FALSE

END

TO SUBSET :A :B

IF EMPTY? :A [OP “TRUE]

IF MEMBER FIRST :A :B [OP SUBSET

BUTFIRST :A :B]

OP “FALSE

END

SECTION NINETEEN – TOOLKIT

74

TO INTERSECT :A :B

IF EMPTY? :A [OP []]

OP IF MEMBER FIRST :A :B [FPUT

FIRST :A INTERSECT BF :A :B]

[INTERSECT BF :A :B]

END

TO UNION :A :B

IF EMPTY? :A [OP :B]

OP IF MEMBER FIRST :A :B [UNION BF

:A :B] [FPUT FIRST :A UNION BF :A :B]

END

TO MEMBER :A :B

IF EMPTY? :B [OP “FALSE]

IF EQUAL :A FIRST :B [OP “TRUE]

OP MEMBER :A BF :B

END

TO MINUS :A :B

IF EMPTY? :A [OP []]

OP IF MEMBER FIRST :A :B [MINUS

BF :A :B] [FPUT FIRST :A MINUS

BF :A :B]

END

Back to Basics
As we have seen, Logo uses REPEAT and RECURSION,
where other languages use FOR, WHILE etc. For those who
still pine for BASIC, here are some useful procedures

TO FOREVER :INSTRUCTIONLIST

RUN :INSTRUCTIONLIST

FOREVER :INSTRUCTIONLIST

END

TO UNTIL :CONDITION :INSTRUCTIONS

IF RUN :CONDITION [STOP] [RUN

:INSTRUCTIONS]

UNTIL :CONDITION :INSTRUCTIONS

END

TO WHILE :CONDITION :INSTRUCTIONS

IF RUN :CONDITION [RUN :INSTRUCTIONS]

[STOP]

WHILE :CONDITION :INSTRUCTIONS

END

SECTION NINETEEN – TOOLKIT

75

Graphics
Here are some graphics tools. You have already met
MOVETO. I expect you will think of some more if you get at
all deeply involved in Turtle graphics.

TO MOVETO :X :Y

PU SETPOS SE :X :Y

END

TO LINE :X1 :Y1 :X2 :Y2

MOVETO :X1 :Y1

PD SETPOS SE :X2 :Y2

END

TO DIST1 :DX :DY

OP SQRT :DX * :DX + :DY * :DY

END

TO DIST :X1 :Y1 :X2 :Y2

OP DIST1 :X1 – :X2 :Y1 – :Y2

END

TO TDIST :PT

OP DIST XCOR YCOR FIRST :PT FIRST BF :PT

END

Pretty Printing
Teachers may often want to print out procedures. This not
easy if they include long lines. In order to introduce a break
in lines for printing purposes, we have included this suite of
PRETTYPRINT programs. The way to use them is as follows:
LOAD “PRETTYPRINT making sure that the PRETTYPRINT
file includes all the procedures set out below.

Set the maximum line length you can accommodate on your
printer by MAKE “PW 55, for example; the default value of
“PW is 39. Then LOAD the procedure you want to
PRETTYPRINT, and type PP “PROC where PROC is the
name of the procedure. If you want to print out a number of
procedures use MAP:

MAP “PP [PROC1 PROC2 PROC3 ...]

MAP has many uses when you want to run a procedure a
number of times with different inputs.

SECTION NINETEEN – TOOLKIT

76

TO DEF :L

IF EMPTY? :L [STOP]

PR FIRST :L

DEF BF :L

END

TO MAP :F :L

IF EMPTY? :L [STOP]

RUN SE :F [FIRST :L]

MAP :F BF :L

END

TO PP :PROC

MAKE “PL TEXT :PROC

MAKE “PL LPUT [END] SE BL LIST (SE

“TO :PROC FIRST :PL “ BF :PL

MAKE “LPOS 0

PPLINES :PL CR

END

TO CR

PR “

MAKE “LPOS 0

END

TO PPLINES :L

IF EMPTY? :L [STOP]

PPLIST FIRST :L CR

PPLINES BF :L

END

TO PPLIST :L

IF EMPTY? :L [STOP]

IF WORD? FIRST :L [PPWORD FIRST :L]

[TYPE “[PPLIST FIRST :L TYPE

“] SPACE]

PPLIST BF :L

END

TO SPACE

MAKE “LPOS :LPOS + 1

TYPE CHAR 32

END

SECTION NINETEEN – TOOLKIT

77

TO PPWORD :W

IF (LEN :L) > :PW [SPACE SPACE]

TYPE :W

MAKE “LPOS LEN :W SPACE

END

TO LEN :W

OP SUM :LPOS COUNT :W

END

TO TEXT :NAME

SAVE “PROG :NAME

SETREAD “PROG

OP FPUT BF BF RL READLINE []

END

TO READLINE :TEXT

MAKE “LINE RL

IF EMPTY? :LINE [OP “]

IF [END] = :LINE [SETREAD [] ✻DELETE “PROG OP :TEXT]

OP READLINE LPUT :LINE :TEXT

END

TO DEFINE :NAME :LIST

SETWRITE “PROG

PR (SE “TO :NAME FIRST :LIST)

DEF BF :LIST

PR “END

SETWRITE []

LOAD “PROG

✻DELETE “PROG

END

78

SECTION TWENTY – LOGO GRAMMAR

Introduction
The sections which follow make up a reference manual,
rather than a guide for newcomers. However, if you are a
newcomer, you will find it useful to extend your
understanding of procedures mentioned in the introductory
sections of the manual, and they will certainly be an
essential guide once you have gained confidence in
programming.

If you have used Logo before, these sections should provide
all you need to use Logotron’s Logo on the BBC Model “B”
Micro. In most respects, Logotron’s Logo conforms to the
conventions established by Logo Computer Systems Inc, of
Montreal, and Systèmes d’Ordinateurs Logo International, of
Paris in implementing Logo for a number of popular
microcomputers, including Apple II, the IBM PC, the Sinclair
Spectrum, the Atari range and the Coleco Adam. There are,
however, some special features, made possible by the BBC’s
operating system. In some cases we have departed from the
standard implementations, and we do draw attention to these
(see, particularly, EDIT, ERASE, PO and SAVE. In every case,
there are important innovations).

The Installation Guide (Section 1) gives full instructions
concerning the installation of the 16K ROM containing the
Logo system. This second part of the manual is organised in
sections, each covering a particular kind of primitive – The
Turtle, Words and Lists, Variables, Defining and Editing.
Within these sections, you will find a short description of the
relevant primitives, in alphabetical order.

If you are not sure where to find a particular primitive,
consult the main index at the back of the manual. With most
primitives, you will find one or more examples of the way it
is used.

There are some conventions used in describing the
primitives. Where a primitive requires a number as its input,
FORWARD, for example, we write FORWARD n. Similarly
LEFT n or SIN n.

In these cases, we are describing the kind of input a
primitive requires; we are not speaking about the way the

SECTION TWENTY – LOGO GRAMMAR

79

input is written when you type it into the keyboard. When
you come to use one of these primitive procedures, you
replace the n with a number. Where a primitive requires 2
numbers, REMAINDER, for example, we write REMAINDER
a b.

Similarly: PROD a b. Where a list of instructions follows the
primitive, as with REPEAT, for example, we write REPEAT
instructionlist. The word list indicates that the instructions
should be enclosed in square brackets [].

Where a primitive takes the name of a procedure or a file,
as in SAVE, we write SAVE filename procname. When you
use such a primitive, you replace filename with the name of
the file you are creating, and procname with the name of the
procedure you wish to save.

In the case of the THING attached to a NAME, we speak of
an object. For example, LPUT object list. A Logo object can
be a word, a number, or a list.

Where a conditional is involved. For example:

IF :X = :Y [PRINT “OKAY]

we would write IF pred instructionlist. Pred stands for
predicate. It must be a condition which the computer can
decide to be TRUE or FALSE. It often involves deciding
whether one number is bigger than another, or whether two
numbers are equal, or whether a list has anything in it, or
whether the current pen colour is one colour or another.

another example:

IF AND EQUAL? :X :Y LIST? :X [PR [YOU’VE GOT IT]] [PR [TRY AGAIN]]

we would write: IF AND pred1 pred2 instructionlist1
instructionlist2

This gives us a convenient notation for describing the Logo
procedures. If you find it bothers you, when you begin using
the reference manual, find someone else who can explain it
to you. It’s really easy once you have got hold of the idea.

Logo, like other languages, has a grammar. The conventions
described above, allow us to refer to that grammar or syntax
in a consistent way.

SECTION TWENTY – LOGO GRAMMAR

80

Procedures
The basic building blocks of Logo are the procedures it has
in its memory from the moment you switch on your
computer. These are the PRIMITIVES, which really is short
for primitive procedures, the roots from which other
procedures are derived.

You can discover what they are by typing PRIMITIVES.

These can be used directly by typing on the keyboard. When
you are using Logo in this way, we say you are at
TOPLEVEL. For example, type FORWARD n, where n is a
number, and the turtle will immmediately move forward. But
the PRIMITIVES can also be used to build up other
PROCEDURES, which can then be used by name at
TOPLEVEL as if they were PRIMITIVES. These
PROCEDURES, which you create, are built in the part of the
memory, which will be referred to throughout this manual as
workspace . It is the space in which you work.

Using the BBC micro, the amount of available workspace
changes according to which MODE you are in. This is
inevitable, as the BBC micro uses a variable amount of
memory to manage the screen. If your workspace overflows,
you will receive a Logo Message on your screen, saying
OUT OF SPACE.

Procedures are defined between the words TO and END,
and have the form:

TO name inputlist CR
instructionlist CR
END

for example

TO HELLO :NAME

PR (SE “HELLO WORD :NAME “. [THERE MUST BE MORE TO LOGO THAN

THIS.])

END

HELLO “RUTH

would elicit the response:

HELLO RUTH. THERE MUST BE MORE TO LOGO THAN THIS.

SECTION TWENTY – LOGO GRAMMAR

81

Note: The first line of a procedure is called the title line . It
always begins with TO, followed by the name of the
procedure, folowed by the names of any variables which are
required as inputs to the procedure. Examples are:

TO SQUARE :SIDE

TO BOX :HEIGHT :WIDTH

TO HELLO :NAME

TO STAR :POINTS :SIZE :COLOUR

The last line must always consist of END by itself.

Since procedures work just like extra primitives, procedures
can in turn be used to build new procedures. For example:

TO SQUARES :SIDE :NUMBER

REPEAT :NUMBER [SQUARE :SIDE RT 360 / :NUMBER]

END

The procedure SQUARE is used to build the new procedure
SQUARES. SQUARES could be referred to as the
superprocedure, and SQUARE as the subprocedure. When a
subprocedure is called from inside a superprocedure, you are
no longer at TOPLEVEL. Logo is working outside your direct
control. You could only intervene by stopping it, pressing the
ESCAPE or BREAK keys.

If you type a word that has not been defined as a
procedure, you will get a message. For example, type JEAN.
Logo will respond: I DONT KNOW HOW TO JEAN

Objects
Logo objects are words or lists used as inputs or outputs
from procedures. A word is a series of alphanumeric
characters. A word is contained between two delimiters (see
next subsection, which defines delimiters). Each character in
a word is said to be an element of that word.

A double quotes mark (“) at the beginning of a word enables
Logo to distinguish words from primitives and procedure
names. There is also a word with no characters in it, called
the empty word. It is written with a double quotes mark “ .
Try
PR “R2D2

PR “WELCOME

PR “

SECTION TWENTY – LOGO GRAMMAR

82

“R2D2 “WELCOME and “ are all words in Logo. Numbers
(eg 23 134.567 1000) are also words in Logo, but they can
be written without the quotation marks, as can the boolean
values, TRUE and FALSE.
PRINT 25

PRINT “25
produce the same response.

A list consists of a series of Logo objects usually enclosed in
square brackets []. The objects will either be words (or
numbers) or other lists. The individual elements of a list are
separated by blank spaces. There is also an empty list,
written []. [CAT 123 MOUSE HOUSE] is a list containing four
elements. [[CAT 123] [MOUSE HOUSE]] is a list containing
two elements, each of two elements.

A Logo object may also be the THING of a variable NAME.
For example:

MAKE “FRUIT [APPLES AND PEARS]

:FRUIT is a Logo object; so is THING “FRUIT.

Delimiters
The word delimiter is one of those awful bits of computer
jargon, which strike terror into the first time user. Never fear.
You already use delimiters when you read and write English.
You call them punctuation marks. A sentence begins with a
capital letter and ends with a full stop. Quoted speech is
enclosed in quote marks. A question ends with a question
mark. Words are separated from one another by leaving
blank spaces. These are all delimiters in ordinary written
English.

When a computer program scans along a line of symbols
typed in from the keyboard, or fed into memory off a disk or
cassette, it relies on delimiters, its own form of punctuation,
to know where it is and what to expect.

For example a left-handed square bracket [tells it with
absolute certainty to expect a LIST. The other bracket] tells
it the LIST has now finished. A carriage return at the end of
a line says that the line is finished. In Logo, as in English,
we leave spaces between words, and Logo gets confused if
you run two words together, unless they are separated by

SECTION TWENTY – LOGO GRAMMAR

83

some other delimiter. These other delimiters are:

[] () = > < + – ✻ /

But even when one of these does appear in a Logo line, it
is usually clearer to leave a space on one side or the other:

MAKE “FRUIT[APPLES]

is quite correct, but
MAKE “FRUIT [APPLES]

is a lot easier to read. Logo takes no notice of extra spaces.

Be careful with the Minus sign as PRINT 7 –6 would
produce:

7

YOU DON’T SAY WHAT TO DO WITH –6

You should have written PRINT 7 – 6

Inputs
Some Procedures and Primitives need inputs to enable
them to work. Inputs are Logo objects (words or lists). They
may either be given explicitly at TOPLEVEL or be passed to
the procedure at the point at which a procedure is called
inside a running procedure, as output from another
procedure. For example, at TOPLEVEL:

PRINT COUNT [A B C D E F G H I J K L M N O P Q R S T U V W X Y Z]

26

TO CHECK :LIST :NUMBER

IF :NUMBER = COUNT :LIST [PR “OKAY]

END

CHECK [A B C D E F G H I J K L M N O P Q R S T U V W X Y Z] 26

OKAY

The procedure takes the :NUMBER as 26 and the :LIST as
the letters of the alphabet, COUNTS the latter, compares the
two values, and prints OKAY. If CHECK is used without two
inputs, LOGO will complain

NOT ENOUGH INPUTS TO CHECK

In the following procedure, CHECK is a subprocedure, and
one of its inputs is the output of the procedure DICE.

SECTION TWENTY – LOGO GRAMMAR

84

TO EVEN.THROW

CHECK REMAINDER DICE 2 0

END

TO DICE

OP 1 + RANDOM 6

END

Quotes, Dots and Brackets
Unless you specifically indicate otherwise, using QUOTES (“),
DOTS (:) or BRACKETS ([]), Logo interprets every word as a
primitive or a procedure. The only exceptions are numbers
(written with digits 0. . .9). If it does not find the word in its
lists of primitives and defined procedures, it sends the
message

I DON’T KNOW HOW TO

The QUOTES (“) indicate to Logo that the sequence of
characters immediately following, and ending with a blank
space, is a word. Even if it is the name of a procedure or a
primitive, it will be treated simply as a word. For example:

PRINT “PRINT

PRINT

The DOTS (:) tell Logo that the sequence of characters
immediately following, and ending with a blank space, are
the name of a Logo object to be evaluated. The DOTS tell
Logo to refer to the THING attached to that name. For
example:

PRINT :FRUIT

APPLES AND PEARS

Unless Logo is expecting a list of instructions, as it does
after the primitives REPEAT, RUN and IF, the words
enclosed in BRACKETS ([]) are treated as a list of Logo
words, each preceded by QUOTES. For example:

PRINT [PRINT FORWARD 100]

would simply print out the words contained in the square
brackets, it would not attempt to execute them.

Commands and Operations
In Logo, primitives and procedures can be conveniently
divided into two categories: commands and operations .

SECTION TWENTY – LOGO GRAMMAR

85

A command never outputs a value , whereas an operation
always outputs a value . The value output by an operation
must be a Logo object (a word or a list, including numbers,
boolean values, and names of primitives, procedures and
variables).

Typical commands: FORWARD, SETH, REPEAT, PRINT,
SQUARE,

Typical operations: SQRT, WORD, EMPTY?, LIST,
REMAINDER, REVERSE

Consequently, any procedure which is an operation can act
only as the provider of an input to another procedure. For
example, if one wanted to construct an operation to test if a
number was even:

TO EVEN? :NUMBER

0 = REMAINDER :NUMBER 2

END

You then try it out with:

IF EVEN? 57 [PRINT “OKAY]

and get the Logo message:

YOU DONT SAY WHAT TO DO WITH FALSE IN EVEN

The fix is the word OP.

TO EVEN? :NUMBER

OP 0 = REMAINDER :NUMBER 2

END

IF EVEN 56 [PRINT “OKAY]

OKAY

If a procedure is to work as an operation, it must include
the command, OP . It then outputs its result to the
procedure which calls it. Another example

TO MAX :A :B

IF EQUAL? :A :B [OP :A]

IF :A > :B [OP :A] [OP :B]

END

PRINT MAX 7 19

19

PRINT MAX 6 6

6

SECTION TWENTY – LOGO GRAMMAR

86

If you try to use a command as input to another command,
you get a Logo message. For example

PRINT FD 100

FD DIDN’T OUTPUT TO PRINT

You can turn a operation into a command by changing the
word OP and substituting some other command. Try
PRINT in the examples given above.

This distinction is so important that when we come to list
the primitives, we indicate in each case whether it is a
command or an operation.

Variables
Variables are created in two ways in Logo. First, as inputs to
procedures, declared in the title line, as in TO SQUARE
:SIDE, for example. And second, through assignment
statements, using the primitive MAKE.

Where variables are created as inputs to a procedure, they
are LOCAL to that procedure and any subprocedures. For
example:

TO STAR :SIDE

REPEAT 36 [SQUARE :SIDE RT 10]

END

If you then run STAR 200 (assuming SQUARE has been
previously defined), the turtle will draw a star of the size
required, but then :SIDE will immediately lose its value. This
can be demonstrated by typing:

PRINT :SIDE

:SIDE HAS NO VALUE

The variable :SIDE was LOCAL to those procedures (in this
case STAR and SQUARE) to which it was an input, and has
no effect on any other procedures. Note that STAR was able
to pass the variable :SIDE on to its subprocedure SQUARE
:SIDE.

The LOCAL character of these inputs allows one to use the
same variable names :X :SIZE :LIST :NUM over and over
again as inputs to different procedures, all of which may be
in the memory simultaneously.

When you create a variable using the Logo assignment word

SECTION TWENTY – LOGO GRAMMAR

87

MAKE, for example:

MAKE “X 3

MAKE “FRUIT [APPLES AND PEARS]

MAKE “ALPHABET

[A B C D E F G H I J K L M N O P Q R S T U V W X Y Z]

That variable is GLOBAL, and will exist independently of any
procedure which calls it, unless it is specifically ERASEd. Like
procedures, global variables can be EDITed, ERASEd, Printed
Out or SAVEd.

This is a major innovation in SOLI’s implementation of
Logo for the BBC micro. To refer to a variable by name,
and to distinguish it from a procedure name, it must be
enclosed in a list and preceded by quotes. For example:

ED [“FRUIT]

would move a variable called FRUIT to the EDITOR.
Whereas:

ED “FRUIT or ED [FRUIT]

would lead Logo to look for a procedure called FRUIT. You
will find more about this in the sections dealing with each
primitive.

A variable can contain any Logo object, words (including
numbers), lists, and another variable. For example:

MAKE “ABC “ALPHABET

MAKE “ABC :ALPHABET

In the first case, :ABC stands for the word “ALPHABET. In
the second, :ABC stands for the list of letters created
previously with the name “ALPHABET. When creating a
variable, one does not have to declare the data type as one
does in some other computer programming languages. So
long as the THING attached to the name is a Logo object, it
is valid assignment.

There are two ways of getting at the value assigned to a
particular variable name:

PRINT :FRUIT

APPLES AND PEARS

PRINT THING “FRUIT

APPLES AND PEARS

SECTION TWENTY – LOGO GRAMMAR

88

The second form is particularly useful where you have a
variable name stored without DOTS as an element of a list.
Work through the following examples:

MAKE “HEATHER [CALCIFUGE LOW-GROWING SHRUB]

MAKE “CALCIFUGE [LIME-HATING PLANT]

MAKE “LOW-GROWING [PLANTS WHOSE HEIGHT RARELY EXCEEDS 50 CM.]

MAKE “SHRUB [PLANT WITH WOODY STEMS PERSISTING FROM ONE

YEAR TO ANOTHER]

MAKE “H [EIGHTH]

MAKE “EIGHTH [BETWEEN SEVENTH AND NINTH]

PR :HEATHER

PR THING “HEATHER

PR THING FIRST THING “HEATHER

PR THING THING FIRST “HEATHER

PR FIRST THING THING “HEATHER

PR THING FIRST “HEATHER

PR THING FIRST BF :HEATHER

PR THING LAST :HEATHER

Logo Lines
A Logo line can be much longer than a line on your monitor
screen, no matter what mode you are in. It ends when you
press the RETURN key, but cannot be more than 255
characters. Before you reach the limit, a warning bleep tells
you to stop. Here is a complex Logo Line:

IF EQUAL? :LETTER FIRST :ALPHABET [MAKE “WORD1 FPUT :LETTER

:WORD1] [SEARCH :LETTER BF :ALPHABET

Here are some guidelines to help you interpret a complex
Logo line:

1. When you see a procedure or primitive name, be sure you
know:

a. whether it is a command or an operation;
b. how many inputs it should take.

2. The first procedure of a Logo line must always be a
command.

SECTION TWENTY – LOGO GRAMMAR

89

3. Be sure to account for every input to a procedure.

4. When all the inputs to a command have been accounted
for, the next procedure must be another command.

For example:

MAKE “WD “HAPPY

PRINT SE [I AM] WORD BL :WD “IER

Analysing this line, we see that PRINT is a command with a
single input. This must be the output of SE, which is an
operation with two inputs.

The first input to SE is the list [I AM]. The second is the
output of the operation WORD. The latter is once again an
operation with two inputs. The first is the operation
BL, which has a single input :WD. The second input
to WORD is “IER.

Since there are no more procedure names to account for on
the line, we have finished. The following diagram
summarises what we have done:

In the instance above, Logo would print HAPPIER.

Arithmetic
Numbers are a special kind of Logo word. You don’t have to
put quote marks in front of a number, but it’s fine if you do.

MAKE “A “20

MAKE “B 20

PR :A

20

PR :B

20

SECTION TWENTY – LOGO GRAMMAR

90

The following priority is given to infix arithmetic operations ,
all of which take priority over other operations appearing to
the left of them in a Logo line (see below and Section 24).

Infix
Division /
Multiplication ✻

Subtraction –
Addition +

=
<

Equality/inequality

>

So division is executed before multiplication; both are
executed before subtraction, which is executed before
addition. All infix operations performed before prefix
operations appearing to their left in the same Logo line. The
order can be changed by using parentheses ().

PR 4 + 6 / 2

7

PR (4 + 6) / 2

5

If you consider that these infix operations are also primitive
operations, you will quickly see that they don’t behave like
other Logo operations. The normal way for a Logo operation
to work is

operation input input

taking inputs from the right, and outputting the result to the
procedure on the left. For example:

PRINT REMAINDER 14 3

2

REMAINDER takes two inputs, divides the second into the
first, is left with a remainder of 2, which is passed back to
print.

With infix operations you have instead:

input operation input

Logo copes with this confusion by always dealing with
certain arithmetic operations first. These take priority over all

SECTION TWENTY – LOGO GRAMMAR

91

other operations appearing to their left in a Logo line. For
example:

PR RANDOM 2 + 3

is read by Logo as

PR RANDOM (2 + 3)

and not

PR (RANDOM 2) + 3

Another example

IF COUNT :ALPHABET = 26 [PRINT “OKAY]

Logo will try to compare :ALPHABET to 26, and will output
the boolean value FALSE to COUNT, which will output 5 to
IF, at which point, there will be a Logo message

IF DOESN’T LIKE 5 AS INPUT

If the line had been written:

IF (COUNT :ALPHABET) = 26 [PRINT “OKAY]

the Logo interpreter would have been perfectly happy.
Equally it could have coped with:

IF 3 + 4 = 7 [PRINT “OKAY]

because it would have found two infix operations = and +,
and would have dealt with them in the order of precedence
described above, first the + then the =.

IF SUM 3 4 = 7 [PR “OKAY]

SUM DOES’NT LIKE FALSE AS INPUT

The confusion arises when infix operations are mixed with
prefix operations. Remember, the infix arithmetical operations
(listed above) are always evaluated before operations to the
left of them in a Logo line, unless you have indicated
otherwise by judicious use of parentheses ().

Note: this is a controversial area in the design of Logo, and
is poorly documented in most books. Some Logo interpreters
get rid of the confusion by not allowing infix operations.

Screens, Modes and Prompts
When you type instructions to Logo, you have a choice of
three different parts of the system, each of which behaves
in a different way.

At the TOPLEVEL, every instruction you type in is interpreted
and executed inside the workspace immediately you press

SECTION TWENTY – LOGO GRAMMAR

92

the RETURN key. You are at TOPLEVEL as soon as you
switch on the computer. The prompt at this level is a
question mark at the beginning of the line. Whenever you
see that questionmark, you know Logo is waiting to receive
your instructions at TOPLEVEL.

When a procedure is running, the workspace is under the
control of Logo, and not under your direct control, as it is at
toplevel, but the workspace is the same. Logo can only
attend to one set of instructions at a time.

Then there is a reserved area of memory called the Logo
Editor , where you can write new procedures or change old
ones. You enter the Editor by typing
EDIT or just ED.

In the Editor, the prompt is a solid square cursor, instead of
the question mark. Inside the Editor, Logo does not carry out
any instructions, it just waits and records instructions in its
own portion of the computer’s memory, which is called the
Edit Buffer . When you have the procedure just right, you
type CTRL C, and the Editor writes the new procedures into
the workspace ready for use. Special commands are available
to allow you to move the cursor freely around the screen for
ease in changing procedures.

Finally, you can define procedures without going into the
Editor by just typing the title line of a new procedure.

TO name input1 input2

As soon as you hit the RETURN key, you will see a new
kind of prompt

>

This tells you you are defining a new procedure. You are no
longer at TOPLEVEL. It will disappear as soon as you type
the line:

> END

and return you to TOPLEVEL with the message

name DEFINED

Using the BBC Micro, you have several choices of MODE,
and this will affect the things you can do in LOGO. You
should read about the 8 different MODES in the BBC User
Guide (p. 160).

SECTION TWENTY – LOGO GRAMMAR

93

You will discover that graphics are available in some MODES
(0 1 2 4 5) and not in others (3 6 7). In MODE 2, you can
have 16 colour combinations; in MODES 1 & 5, four colours,
and in MODES 0 & 4, only two colours. In the text MODES
(3 & 6), you can choose a text colour and a background
colour. MODE 7 is a special kind of text called Teletext is a
subject on its own.

The problem for Logo of changing MODES stems from
the fact that the monitor demands different amounts of
memory for different MODES. When you enter Logo you
are in MODE 4. You change MODE by typing
SETMODE n.

You can soon see that this effects the amount of memory
you have available for writing procedures by typing PR
NODES.

When you want to change MODES, you should save your
current procedures, either on disk (or cassette) or in the
Editor. Type: EDALL; Press ESCAPE to leave the Editor;
then ERALL, which erases all procedures from the
workspace, then SETMODE n; then ED to enter the Editor;
then CTRL C, and all the procedures will be read back from
the Editor into the workspace.

If there are too many procedures or variable names to hold
in the Editor, which can contain 1,000 characters, you will
have to SAVE them onto a disk or cassette, and then LOAD
them back into the workspace after you have changed
MODE.

If you ever forget which MODE you are in, type PR MODE.
Providing you are in a MODE which offers graphics (0 1 2 4
5), you can choose between two screeens, the Graphics
Screen or the Text Screen. In the Graphics screen, you can
type in commands, or define procedures, only at the very
bottom of the screen. The main part of the screen is
reserved for the turtle and any pictures you may draw. In the
Text Screen, you can write all over the screen. When you
turn on the computer you are in Text Screen. To switch to
the Graphics Screen, either give a command to the Turtle
(see Section 21) or type CS.

To leave the Graphics Screen and return to Text Screen, type
TS. If you do this, any pictures you have drawn will be lost.

SECTION TWENTY – LOGO GRAMMAR

94

So be sure you don’t mind, or have saved the picture with
SAVEPICT (see Section 28).

Recursion
Logo allows recursive procedures. A recursive procedure is
one which calls itself. Here is a recursive explanation of how
you walk. To walk, put your left foot in front of the right,
then the right foot in front of the left, then walk.

Examples are given throughout this manual of recusive
procedures. The most important thing to understand about
them is that they never stop without some kind of limiting
condition, which brings them to an end.

You may have come across the word recursion before in
arithmetic. For example, express one third as a decimal
fraction:

1 / 3 = 0.333333333333333333333333 recurring

We usually put a limit on such an expression by stopping it
after three repetitions, and writing 0.333.

Here is a typical procedure, including a stop clause:

TO SPI :SIDE :ANGLE :INC

IF :SIDE > 300 [STOP]

FD :SIDE RT :ANGLE

SPI :SIDE + :INC :ANGLE :INC

END

Recursion is not always the most efficient way of reaching
your goal. Here, for example are two ways of generating the
nth member of the Fibonacci series (1 1 2 3 5 8 13):

TO FIB :N

IF :N < 3 [OP 1]

OP (FIB :N – 1) + (FIB :N – 2)

END

TO FIB :N

MAKE “A 1 MAKE “B 1

IF :N < 3 [OP 1]

REPEAT QUOT (:N – 2) 2 [MAKE “A (:A + :B) MAKE “B (:A + :B)]

IF EQUAL? REMAINDER :N 2 1 [MAKE “A (:A + :B) OP :A] [OP :B]

END

SECTION TWENTY – LOGO GRAMMAR

95

The two procedures produce identical results. The recursive
version (the first one) is far the most elegant and easy to
read. But it can gum the computer up for several minutes
producing the 20th Fibonacci number. The second procedure
is not elegant, but it is efficient. Try them both out for
yourself. The recursive version is often used as a
benchmarking test, to discover how efficiently a particular
implementation of Logo handles recursion. Bad
implementations crash when asked to compute FIB 20 the
hard way. See how long it takes Logotron Logo.

The BBC Operating system
BBC Micro users soon discover two kinds of command,
which have a wide variety of uses. These are command,
which begin VDU or ✻. Both kinds of command are available
in Logo. The only way they differ from the way they are
described in your BBC User Guide (sections 34 and 42) is
that the primitive procedure VDU requires a list as its input.
For example:

VDU [19 1 4 0 0 0]

in MODE 5 would change logical colour 1 (red) to actual
colour 4 (blue)

If you want to input a variable value to the list, you have to
use the construction

VDU SE 19 1 :NEWCOLOUR 0 0 0

The Logo interpreter will supply the value of :NEWCOLOUR
and SE will then output a list to VDU. If one wrote:

VDU [19 1 :NEWCOLOUR 0 0 0]

You would get a Logo Message:

VDU DOESNT LIKE :NEWCOLOUR AS INPUT

In other words, it would simply be treating :NEWCOLOUR as
an element in the list, not as the name of a variable to be
checked against a value.

Both VDU and ✻ commands can usefully be built into
procedures, which can then be given to children as tools.
This is particularly useful in cases where the children might
find the operating system hard work.

SECTION TWENTY – LOGO GRAMMAR

96

The problem with ✻ or star commands is that the star or
asterisk can mean three different things in Logo. It can signal
the beginning of a call to the BBC micro’s operating system; act
as a wild card (see the BBC DFS manual), or act as an infix
arithmetic operator in Logo. The rules for using star(✻)
commands are as follows.

If they come at the beginning of a Logo line or a Logo list, there
is no problem. All subsequent numbers or words on the line, or
in the list, will be sent to the operating system.

If you wish to insert a star command in the middle of a Logo
line, it is necessary to enclose the star command and its inputs
in parentheses. For example:

SETBG 9 (✻FX 9, 50) (✻FX 10,50) FD 100

There is one exception. According to the BBC User Guide, if you
type ✻.1, you should be given information on the contents of
the disc in Drive 1. Logo, however, interprets this as a
multiplication by 0.1. The solution is to use the back slash (\),
which instructs Logo to treat the next character literally, without
reference to its meaning. You type ✻.\1.

If these rules are followed, there should be no problems.

NB. Note the difference between the treatment of VDU and ✻
commands. The former acts like any other Logo primitive, taking
a list of inputs, without commas separating them. Numbers
larger than 255, which require two bytes of memory, are
denoted using quotes (“), eg “1278. Whereas star (✻)
commands have to be isolated from Logo.

WARNING: Some calls to the BBC operating system, like
✻COMPACT and ✻FORMAT, can crash Logo. In such cases,
CTRL BREAK is required to reboot Logo. This is not a bug in
Logotron Logo, it is a feature of the BBC Micro.

97

SECTION TWENTY-ONE – TURTLE GRAPHICS

This section of the manual, and those which follow, consist
of descriptions of each primitive of Logotron Logo for the
BBC Micro.

In bold face, at the beginning of each entry, you will find the
name of the primitive and its short form, if one exists,
followed by the type of each input it requires, in italics. We
indicate on the same line whether the primitive is a
command, an operation, or an infix operation.

Below this, we provide general information about the
primitive and examples of its use.

When you use any primitive or procedure that refers to the
turtle, Logo switches to the graphics screen. If you are in a
MODE without graphics (3, 6 & 7), you will receive a LOGO
message:

NOT POSSIBLE IN THIS MODE

Relatively few examples are given as the operation of Turtle
graphics commands is straightforward, and many examples
are given in the first sections of the manual. Where a
number is required as an input to a Turtle graphics command
it can always be a real number (eg 34.13456). The most
important idea to get hold of when approaching Turtle
Graphics for the first time is that you control the turtle’s
“state”, its heading (the direction in which it is pointing), its
position, whether or not it is drawing a line, the colour of
the line, and the colour of the background. You also control
its domain, and decide whether or not it can ever disappear
from view.

BACK (BK) n command

Moves the Turtle n steps back (ie in the opposite direction
to its heading). Its heading does not change. Note that BACK
0, (with PENDOWN) displays a single dot at the turtle’s
current position, without moving the turtle. Logo will protest
if n is greater than 32767.9999 or less than –32767.9999.
See FORWARD.

BG operation

BG outputs the current BackGround colour. See also SETBG,
PC and SETPC. PRINT BG will print on the screen a number

SECTION TWENTY-ONE – TURTLE GRAPHICS

98

corresponding to the current BackGround Colour. The
numbers of the BackGround colours correspond to the
“logical colours” available in the different modes. These
logical colours can be changed using VDU commands. See
BBC User Guide (pp 160-180 , 377-390), or the SETPAL
procedure set out below.
The default colours in each graphics MODE are:

BG No. MODES 0, 4
0 BLACK
1 WHITE

MODES 1, 5
0 BLACK
1 RED
2 YELLOW
3 WHITE

MODE 2
0 BLACK
1 RED
2 GREEN
3 YELLOW
4 BLUE
5 MAGENTA
6 CYAN
7 WHITE
8 FLASHING BLACK/WHITE
9 FL. RED/CYAN

10 FL. GREEN/MAGENTA
11 FL. YELLOW/BLUE
12 FL. BLUE/YELLOW
13 FL. MAGENTA/GREEN
14 FL. CYAN/RED
15 FL. WHITE/BLACK

The numbers of the MODE 2 colours are the ones you use
if you want to change the default colours in other MODES.
The procedure SETPAL is helpful in this regard

TO SETPAL :A :B

MAKE “A (SE 19 :A :B 0 0 0)

VDU :A

END

where :A is the number of the colour you want to be
changed (in the MODE you are in) and :B is the number of

SECTION TWENTY-ONE – TURTLE GRAPHICS

99

the colour you want (from MODE 2). For example, in
MODES 5 or 1, SETPAL 1 4 would remove RED from your
list of available colours and replace it with BLUE

You can use the procedure MAP (see toolkit) to change all
the colours available, as follows:

MAP “SETPAL [0 1 2 3] [2 4 5 6]

would change your available colours in MODES 5 or 1 from
Black, Red Yellow and White to Green, Blue, Magenta and
Cyan.

CLEAN command

Wipes the graphics screen, without changing the turtle’s
state (see POS & HEADING), or the displayed text in the
text window.

CS command

Wipes the graphics screen and returns the turtle to position
[0 0] in the centre of the screen, and its heading to 0,
pointing straight up the screen. CS does not affect displayed
text, background and foreground colours, or WRAP, FENCE
or WINDOW (see below). CS also acts as the switch from
text screen to graphics screen. If the entire screen is
dedicated to text, that text will be lost in the switch to
graphics screen.

DOT x y command

DOT does not exist as a primitive in Logotron Logo. A
procedure to leave a dot at a specified position, coordinates
x y, can easily be created as follows:

TO DOT :x :y

MAKE “P POS

PU HT SETPOS SE :X :Y

FD 0

SETPOS :P PD ST

END

FENCE command

Limits the turtle’s movements to the screen boundaries.
After using FENCE, Logo will not allow you to move the

SECTION TWENTY-ONE – TURTLE GRAPHICS

100

turtle beyond the limits of the screen. See also WRAP and
WINDOW.

FENCE BK 1000

BK DOES NOT LIKE 1000 AS INPUT

FORWARD (FD) n command

Moves the turtle n steps forward (ie in the direction it is
HEADING). Like BACK 0, FORWARD 0 (with PENDOWN)
displays a single dot at the turtle’s current POSition without
moving the turtle. Logo will protest if n is greater than
32767.9999 or less than –32767.9999. See BACK.

HEADING operation

Outputs the turtle’s heading, a number greater than or equal
to 0 and less than 360. This is the same as the system
used for compass bearings, where North (conventionally at
the top of a map) represents a heading of 0 degrees, East
(towards the right) is 90 degrees, South 180, and West 270.
When you enter Logo, the turtle’s HEADING is 0.

HOME command

Moves the turtle to the centre of the screen and sets its
HEADING to 0. It does not CLEAN the screen. If in
PENDOWN, the turtle draws a line from its current position
to HOME.

HT command

Stands for Hide Turtle, which makes the turtle invisible,
although it can still draw. This command speeds up the
turtle’s movements.

LEFT (LT) n command

Turns the turtle left (counterclockwise) n degrees. It is an
error if n is greater than 32767.9999 or less than
–32767.9999. For example LEFT 45 or LT 45 turns the turtle
45 degrees to the left. LT –45 would turn the turtle 45
degrees to the right. See RIGHT.

SECTION TWENTY-ONE – TURTLE GRAPHICS

101

PC operation

PC outputs a number corresponding to the current
PenColour. PC is 1 on entering Logo. These numbers
correspond to the logical colours available in different modes.
See the section above on BG for details of these, and how
they can be changed using SETPAL. See also SETPC.

PD command

Lowers the turtle’s pen, so it draws a line when it moves.
See PU. Stands for Pen Down.

PE command

The turtle erases any previously drawn lines it passes over.
For example:

TO VANISH

REPEAT 4 [FD 250 RT 90]

PE

REPEAT 4 [FD 250 RT 90]

END

PD reverses the PE command.

PU command

Lifts the turtle’s pen so that no line is drawn when it moves.
For example: PU FD 50. See also PD and SETPOS.

POS operation

Outputs the turtle’s position as a list of coordinates [x y].
When you enter Logo POS is [0 0].

RT 90 FD 50

PR POS

50 0

RIGHT (RT) n command

Turns the turtle right (clockwise) n degrees. It is an error if n
is greater than 32767.9999 or less than –32767.9999. For
example RIGHT 45 or RT 45 turns the turtle 45 degrees to
the right. RT –45 turns the turtle 45 degrees to the left.

SECTION TWENTY-ONE – TURTLE GRAPHICS

102

SCRUNCH operation

Outputs the aspect ratio x:y, the ratio of the length of a
horizontal step to the length of a vertical step. See
SETSCRUNCH. The default value is 1.0.

SETBG n command

Sets the BackGround colour to the colour n. See BG for the
table of values and how to change them. Warning: SETBG
wipes out any graphics currently displayed on the screen.
This is not a bug in the software, it is a feature of the BBC
Micro.

SETH n command

Sets the HEADING of the turtle to n degrees if n >= 0 and
< 360; to REMAINDER n 360 if n > 359; to 360 – n if n <
0 and > –360; and to 360 + (REMAINDER n 360) if n <
–359.

.SETNIB n command

This allows one to achieve spectacular graphics effects, but it
needs to be handled with care, as it is making use of the
BBC micro’s operating system. It corresponds to the BBC
BASIC command PLOT, and variations can be found on p.319
of the BBC User Guide. The value of n corresponds to the
value of K. Try

.SETNIB 85 FD 200 RT 90 FD 200

.SETNIB 21 FD 300

These two values, 85 and 21, will be most useful in normal
use. The dot in front of .SETNIB is there to warn you that
Logo cannot protect you from setting incorrect values as the
input to .SETNIB, as it is controlled by the BBC operating
system, and not by Logo.

SETPC n command

Sets the turtle’s PenColour to the colour n. See BG for the
table of values and how to change them. The number of
colours available depends on the MODE you are in.

SECTION TWENTY-ONE – TURTLE GRAPHICS

103

SETPOS [x y] command

Given a list of two numbers (the x and y coordinates, see
XCOR & YCOR), SETPOS moves the turtle to that POSITION.
If PENDOWN, the turtle leaves a trace. For example
compare:

PD SETPOS [–189 79]

PU SETPOS [123 –90]

If you wish to input a value derived from a variable to
SETPOS, use

SETPOS SE :X :Y

SETPOS [:X :Y]

will prompt the Logo message

SETPOS DOESN’T LIKE [:X :Y] AS INPUT

SETSCRUNCH n command

Sets the aspect ration x:y = n, where x is a turtle step
along the horizontal axis and y is a turtle step on the vertical
axis. Try different values for n between .5 and 1.5 on
squares and circles. For example

SETSCRUNCH .5

REPEAT 360 [FD 10 RT 1]

See also SCRUNCH.

SETX n command

Moves the turtle to point n on the x-coordinate (XCOR)
leaving the y-coordinate (YCOR) unchanged. If PD the
turtle leaves a horizontal trace.

SETY n command

Moves the turtle to point n on the y-coordinate (YCOR)
leaving the x-coordinate (XCOR) unchanged. If PD the
turtle leaves a vertical trace.

ST command

Makes the turtle visible. See HT. Stands for Show Turtle.

SECTION TWENTY-ONE – TURTLE GRAPHICS

104

WINDOW command

Enables the turtle to move outside the screen area, treating
the screen as a window, viewing a small rectangle at the
centre of its circular field. The TURTLE can move up to
32767 steps in any direction from the centre. See FENCE
and WRAP. If you wish to change the size of the graphics
window, you must be in WINDOW. Here is a procedure,
which will split the screen vertically, giving you space on the
right for text and on the left for graphics.

TO SPLITSCREEN

CS

VDU [26 12 28 0 31 20 0 24 “700 “0 “1278 “1000 29 “989 “500]

CS WINDOW

END

In order to understand fully how this works, it is essential to
study the VDU commands in Section 34 (p.377) of the BBC
User Guide. See also Section 28 of this manual. Use the
command TS to reverse any windowing. This
restores all windows (text and graphics) to their default
values.

WRAP command

Makes the turtle’s field WRAP around the edges of the
screen, When the turtle crosses a screen boundary, it
immediately reappears on the opposite side. Topologists will
tell you that WRAP maps the turtle’s field onto a torus.
When you first enter Logo, the turtle’s field is in WRAP.

XCOR operation

Outputs the x-coordinate of the current position of the turtle.
SETX XCOR + 20 moves the turtle 20 steps to the right.
Draws a line unless you first enter the command PU.

YCOR operation

Returns the y-coordinate of the current position of the turtle.
SETY YCOR – 20 moves the turtle 20 steps down the
screen.

105

SECTION TWENTY-TWO – WORDS AND LISTS

There are two types of object in Logo: words and lists. We
discussed them in Section 20 of the manual. Here we look
at some primitives to put them together and take them
apart. These can be quite confusing. So before defining them
one by one, here is a chart, which may help you tell one
from another. If you want to try them out, use SHOW
instead of PRINT, as PRINT strips off the outer brackets,
while SHOW leaves them in place. For example:

SHOW FIRST [[JOHN MARY] [SUSAN GEORGE]]

[JOHN MARY]

PRINT FIRST [[JOHN MARY] [SUSAN GEORGE]]

JOHN MARY

Operation Input Output
FIRST “JOHN J

BF “JOHN OHN

FIRST [MARY JOHN BILL] MARY

BF [MARY JOHN BILL] [JOHN BILL]

FIRST [[MARY JOHN] BILL] [MARY JOHN]

BF [[MARY JOHN] BILL] [BILL]

FIRST [] Logo Message✻

BF [] Logo Message✻

First “ Logo Message+

BF “ Logo Message+

✻ FIRST/BF DOESN’T LIKE [] AS INPUT

+ FIRST/BF DOESN’T LIKE AS INPUT

Operation Input1 Input2 Output
FPUT “LOGO “TIME Logo Message✻

LIST “LOGO “TIME [LOGO TIME]

LPUT “LOGO “TIME Logo Message✻

SE “LOGO “TIME [LOGO TIME]

WORD “LOGO “TIME LOGOTIME

FPUT [AND MORE] [TO COME] [[AND MORE] TO COME]

LIST [AND MORE] [TO COME] [[AND MORE] [TO COME]]

LPUT [AND MORE] [TO COME] [TO COME [AND MORE]]

SE [AND MORE] [TO COME] [AND MORE TO COME]

WORD [AND MORE] [TO COME] Logo Message+

✻ LPUT/FPUT DOESN’T LIKE TIME AS INPUT

+ WORD DOESN’T LIKE [TO COME] AS INPUT

Note: The empty word “ , shown as isolated quotes in a
Logo line, merely appears as a blank space in Logo messages.

SECTION TWENTY-TWO – WORDS AND LISTS

106

In the case of the empty list, [], the delimiters
are shown (see ✻ and + above).

ASCII character operation

Outputs the ASCII code (decimal n) for character. There is a
full list of ASCII codes in the BBC User Guide. If the input
word contains more than one character, ASCII returns the
code for its first character. See CHAR. For example:

TO SECRETCODE :WD

IF EMPTY? :WD [OP “]

OP WORD CODE FIRST :WD SECRETCODE BF :WD

END

TO CODE :LET

MAKE “NUM (ASCII :LET) + 3

IF :NUM > ASCII “Z [MAKE “NUM :NUM – 26]

OP CHAR :NUM

END

PR SECRETCODE “CAT

FDW

PR SECRETCODE “CRAYON

FUDBRQ

The next task is to write a procedure which will translate
secret code back into English.

BF object operation

Outputs all but the first element of object. BF “ or BF [] are
impossibilities and prompt a Logo Message. For example:

SHOW BF [BRIAN J. SMITH]

[J. SMITH]

SHOW BF “DOGS

OGS

SHOW BF [DOGS]

[]

SHOW BF 3456

456

SHOW BF []

BF DOESN’T LIKE [] AS INPUT

SECTION TWENTY-TWO – WORDS AND LISTS

107

The following procedure strips a word or list, one element at
a time:

TO TRIANGLE :MESSAGE

IF EMPTY? :MESSAGE [STOP]

PRINT :MESSAGE

TRIANGLE BF :MESSAGE

END

TRIANGLE “LOGO

LOGO

OGO

GO

O

TRIANGLE [HOW NOW BROWN COW]

HOW NOW BROWN COW

NOW BROWN COW

BROWN COW

COW

But watch out for this

MAKE “PAIR [3 5]

IF 5 = BF :PAIR [PR “OKAY][PR [TRY AGAIN]

TRY AGAIN

IF 5 = FIRST BF :PAIR [PR “OKAY][PR [TRY AGAIN]

OKAY

The reason is that BF list outputs another list. In order to
compare the second element of the list :PAIR to 5, you
need to use the additional operation FIRST. BF word outputs
another word.

BL object operation

Outputs all but the last element of the specified object (word
or list). It is the mirror image of BF.

SHOW BL [I YOU SHE WE]

[I YOU SHE]

SHOW BL “FLOWER

FLOWE

SHOW BL “

BL DOESN’T LIKE AS INPUT

See BF, which also refuses to accept the empty word or list
as input.

SECTION TWENTY-TWO – WORDS AND LISTS

108

CHAR n operation

Outputs the character whose ASCII code is n (see ASCII), an
integer from 0 through 255.

COUNT object operation

Outputs the number of elements in the specified object
(word or list):

PR COUNT [A B C D E F G]

7

PR COUNT 2345

4

PR COUNT “PEACOCK

7

MAKE “PERSON [HEAD ARMS LEGS BODY]

PRINT COUNT :PERSON

4

TO PICK :INFO

OP ITEM (1 + RANDOM COUNT :INFO) :INFO

END

PR PICK :PERSON

LEGS

EMPTY? object operation

Outputs TRUE if the Logo object is empty, otherwise outputs
FALSE:

MAKE “A []

PR EMPTY? :A

TRUE

MAKE “A “CABBAGES

PR EMPTY? :A

FALSE

PR EMPTY? BF [UNICORNS]

TRUE

Where a list has only one element, as [UNICORN] above,
BF list is the empty list []. The following procedure

SECTION TWENTY-TWO – WORDS AND LISTS

109

matches animal sounds to animals:

TO TALK :ANIMALS :SOUNDS

IF OR EMPTY? :SOUNDS EMPTY? :ANIMALS [PR [THAT’S ALL FOR NOW]

STOP]

PR SE FIRST :ANIMALS FIRST :SOUNDS

TALK BF :ANIMALS BF :SOUNDS

END

TALK [DOGS MOSQUITOS WOLVES MONKEYS] [BARK ZZZZZZZZZZZ HOWL

CHATTER]

DOGS BARK

MOSQUITOS ZZZZZZZZZZ

WOLVES HOWL

MONKEYS CHATTER

THAT’S ALL FOR NOW

FIRST object operation

Outputs the first element of a word or list. FIRST of a word
is a character; FIRST of a list may be a word or a list:

SHOW FIRST “HAPPY.NEW.YEAR

H

SHOW FIRST [HAPPY NEW YEAR]

HAPPY

SHOW FIRST [[H A P P Y] [N E W] [Y E A R]]

[H A P P Y]

The Primitive ITEM already exists, but the following
procedure shows how you could create it from other Logo
procedures.

TO ITEM1 :N :OBJECT

IF :N = 1 [OP FIRST :OBJECT]

OP ITEM1 :N – 1 BF :OBJECT

END

PR ITEM1 3 [CUP PUT TUB BUD]

TUB

This illustrates an important point: beginning with LIST,
FIRST and BF, you can create most other Logo
procedures. You will find other instances of this truth in the
toolkit.

SECTION TWENTY-TWO – WORDS AND LISTS

110

FPUT object list operation

Stands for First PUT. Outputs a new list, formed by putting
the specified object at the beginning of the specified list.
See the chart at the beginning of this section comparing
FPUT with other operations that combine words and lists.
Example:

TO REV :LIST

IF EMPTY? :LIST [OP []]

OP FPUT LAST :LIST REV BL :LIST

END

PRINT REV :ALPHABET

Z Y X W V U

Note: FPUT requires a list as its second input. It will not
bind two words together.

ITEM n list operation

Outputs the nth ITEM of a specified list. See FIRST above.

TO ITEMISE :OBJECT :LIST :COUNTER

IF NOT MEMBER? :OBJECT :LIST [PR (SE :OBJECT [IS NOT AN ITEM OF]

:LIST) STOP]

IF EQUAL? :OBJECT ITEM :COUNTER :LIST (OP (SE :OBJECT [IS ITEM]

:COUNTER “OF :LIST)]

OP ITEMISE :OBJECT :LIST :COUNTER + 1

END

TO PICKRANDOM :L

OP ITEM 1 + (RANDOM COUNT :L) :L

END

LAST object operation

Outputs the LAST element of a word or list. LAST of a word
is a character; LAST of a list may be a word or a list.

SHOW LAST “HAPPY.NEW.YEAR

R

SHOW LAST [HAPPY NEW YEAR]

YEAR

SHOW LAST [[H A P P Y] [N E W] [Y E A R]]

[Y E A R]

SECTION TWENTY-TWO – WORDS AND LISTS

111

LAST or FIRST of the empty word or empty list is an
impossibility and prompts a Logo message. Example

PR LAST “

LAST DOESN’T LIKE AS INPUT

LIST object1 object2 operation

Outputs a list, whose elements are object1 and object2.

MAKE “LINE LIST [ONE TWO] [THREE FOUR]

SHOW :LINE

[[ONE TWO][THREE FOUR]]

Note 1: Where the input objects consist of two lists, the
lists remain as separate lists. See SE, which would combine
the two lists into a single list.

Note 2: LIST can take only two inputs. It is unlike SE or
WORD, which can be enclosed in parentheses and given any
number of inputs. If one wishes to use LIST with more than
two inputs one must repeat the operation:

LIST object1 LIST object2 object3

For Example

MAKE “LINE LIST [ONE TWO] LIST [THREE FOUR] [FIVE SIX]

SHOW :LINE

[[ONE TWO] [[THREE FOUR] [FIVE SIX]]]

Whereas:

MAKE “LINE (SE [ONE TWO] [THREE FOUR] [FIVE SIX])

SHOW :LINE

[ONE TWO THREE FOUR FIVE SIX]

LIST? object operation

Outputs TRUE if the object is a list, otherwise FALSE.

PR LIST? [6 ABC LOGO]

TRUE

PR LIST? 6

FALSE

PR LIST? BF [CATS]

TRUE

SECTION TWENTY-TWO – WORDS AND LISTS

112

LPUT object list operation

Stands for Last PUT. Outputs a new list which places the
object at the end of the list. LPUT is the exact counterpart
of FPUT. Like FPUT, it must have a list as its second input.

PR LPUT “STONE [WOOD IRON BRICK]

WOOD IRON BRICK STONE

But

PR LPUT “D “STONE

LPUT DOESN’T LIKE STONE AS INPUT

MEMBER? object list operation

Outputs TRUE if the object is an element of the list,
otherwise FALSE.

PR MEMBER? “A [B 20 A ORANGE]

TRUE

MAKE “FRUIT [APPLES PEARS PLUMS RASPBERRIES]

IF MEMBER? “PLUMS :FRUIT [PR “OKAY]

OKAY

IF MEMBER? “PLUM :FRUIT

FALSE

PR MEMBER? “L [AB [L] Y Z]

FALSE

PR MEMBER? “D “ODD

MEMBER? DOESNT LIKE “ODD AS INPUT

TO VOWEL :LETTER

OP MEMBER? :LETTER [A E I O U]

END

IF VOWEL “I [PR [THAT’S A VOWEL]]

THAT’S A VOWEL

NUMBER? object operation

Outputs TRUE if the object is a number; otherwise FALSE.

PR NUMBER? 3

TRUE

IF NUMBER? [7] [PR “OKAY] [PR [TRY AGAIN]

TRY AGAIN

SECTION TWENTY-TWO – WORDS AND LISTS

113

In this case the test failed because [7] is a list not a
number.

IF NUMBER? FIRST [7] [PR “OKAY] [PR [TRY AGAIN]

OKAY

Here, FIRST extracts 7 from the list.

TO READNUMBER

MAKE “CHECKNUM RL

IF NUMBER? :CHECKNUM [OP :CHECKNUM] [PR [THAT’S NOT A NUMBER

TRY AGAIN] READNUMBER]

END

Readnumber is often a useful variation on READLIST when
constructing games and quizzes, to force entry of a number
rather than a string of letters.

SE object1 object2
(SE object1 object2...objectn) operation

Outputs a list composed of all the objects in the input. See
LIST for difference. SE is extremely useful in Logotron Logo
for providing inputs to VDU commands. For example:

TO TEXTCOL :N

MAKE “N (SE 19 1 :N 0 0 0)

VDU :N

END

TO PAPERCOL :X

MAKE “X (SE 19 0 :X 0 0 0)

VDU :X

END

TO TEXT’N’PAPER :N :X

TEXTCOL :N

PAPERCOL :X

END

See also SETPOS for a similar use of SE.

WORD word1 word2
(WORD word1 word2 ... wordn) operation

WORD outputs a word consisting of its inputs, which must
themselves be words. WORD will not accept a list as input.

SECTION TWENTY-TWO – WORDS AND LISTS

114

For example:

PR WORD “ASTON “ISH

ASTONISH

PR (WORD “ASTON “ISH “ING)

ASTONISHING

TO WEEK :DAYS

IF EMPTY? :DAYS [STOP]

PR WORD FIRST :DAYS “DAY

WEEK BF :DAYS

END

MAKE “DAYS [MON TUES WEDNES THURS FRI SATUR]

WEEK :DAYS

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY

SATURDAY

WORD? object operation

Outputs TRUE if the object is a word, otherwise FALSE.

PR WORD? “123ABC

TRUE

PR WORD? BF “123ABC

TRUE

PR WORD? FIRST [123ABC]

TRUE

PR WORD? 123

TRUE

PR WORD? [XYZ]

FALSE

PR WORD? []

FALSE

115

SECTION TWENTY-THREE – VARIABLES

Any Logo word can be used to name a variable. A variable
names a thing. The THING which is named is a Logo object
and can be a word or a list. The THING is also referred to
as the value of the variable. See Section Twenty.

MAKE name object command

Creates the variable name and gives it the value object.
Once the variable has been created, you can recall its value
with dots (:). See also THING. For example:

MAKE “NATIONS [FRANCE GERMANY RUSSIA ENGLAND CHINA]

PRINT :NATIONS

FRANCE GERMANY RUSSIA ENGLAND CHINA

PRINT “NATIONS

NATIONS

MAKE “X 8

PR :X

8

MAKE “X COUNT :NATIONS

PR :X

5

Variables created using MAKE are global in their scope. See
the Summary of Logo Grammar. For example:

MAKE “SIZE 200

TO SQ

REPEAT 4 [FD :SIZE RT 90]

END

TO SQUARES

SQ

PR (SE [THE VALUE OF “SIZE IS NOW] :SIZE)

MAKE “SIZE :SIZE / 2

PU SETPOS (SE XCOR – 300 YCOR) PD

SQ

PR (SE [THE VALUE OF “SIZE IS NOW] :SIZE)

END

SECTION TWENTY-THREE – VARIABLES

116

Compare this with

TO SQUARE :SIDE

REPEAT 4 [FD :SIDE RT 90]

END

TO SQUARES

SQUARE 200

PU SETPOS (SE XCOR – 300 YCOR) PD

SQUARE 300

PR (SE [THE VALUE OF “SIDE IS NOW] :SIDE)

END

In the second case, unless there is already a global variable
called SIDE, you will get a Logo Message, saying

SIDE HAS NO VALUE IN SQUARES

In other words, it is local to SQUARE, and has no value
anywhere else.

You may sometimes want to create a global variable using
MAKE, but nevertheless keep it local to one procedure.
Logotron Logo does not have LOCAL as a primitive, but we
do make it possible to ERASE a variable:

TO SQUARE

MAKE “SIZE 300

REPEAT 4 [FD :SIZE RT 90]

ER [“SIZE]

END

But

TO SQUARE :SIZE

MAKE “SIZE 100

REPEAT 4 [FD :SIZE RT 90]

END

SQUARE 50

PRINT :SIZE

SIZE HAS NO VALUE

It would also be possible to

ED [“SIZE]

PO [“SIZE]

SAVE “VAR [“SIZE]

This is an outstanding new feature of Logotron Logo.

SECTION TWENTY-THREE – VARIABLES

117

NAME? object operation

Outputs TRUE if the object has a value, otherwise FALSE.
NAME? can be used to test for the existence of a global
variable (See MAKE above).

PR NAME? “SIZE

TRUE

PR NAME? “SIDE

FALSE

This last example assumes the user still has the previous
examples in the workspace.

MAKE “FRUIT “APPLE

PR NAME? “FRUIT

TRUE

THING name operation

Outputs the value associated with name. THING “X is the
same as :X.

Note: THING :X is legal, but ::X is not.

MAKE “MARY “HAPPY

MAKE “HAPPY [A BIRTHDAY PARTY]

PR THING “MARY

HAPPY

PRINT THING :MARY

A BIRTHDAY PARTY

TO INC :X

MAKE :X 1 + THING :X

END

MAKE “TOTAL 7

PR :TOTAL

7

INC “TOTAL

PR :TOTAL

8

INC “TOTAL

PR :TOTAL

9

118

SECTION TWENTY-FOUR – ARITHMETIC

Logo uses both integers and real numbers. For example, 6 is
an integer; –6 is an integer, whereas 3.435 is a real
number. Some arithmetic operations, however, always return
integers: INT, RANDOM, ROUND, QUOT.

Logo provides primitive procedures for you to add, subtract,
multiply and divide numbers. You can find sines, cosines and
square roots. Other procedures, to raise a number to a
power, for example, can easily be created, (see below).

Real numbers with more than six digits are converted to
standard form (exponential or scientific notation):

2E+6 means 2 times 10 to the power of 6, or 2,000,000

2.59E–2 means 2.59 times 10 to the power of –2 or
0.0259. Logo truncates a a real number in standard form if it
contains more than 9 digits.

For example, 2718281828459 045 is converted to
2.71828183E+12.

The difference between infix and prefix operations is
discussed in detail in the Section 20 of this manual. But to
repeat briefly: Logotron Logo allows both infix and prefix
arithmetical operations. Infix operations take precendence
over prefix operations appearing to their left in a Logo line. If
there are expressions to the left of the infix operation
requiring prior evaluation, enclose them in parentheses.

Infix Prefix
/

QUOT
Division

REMAINDER
✻Multiplication

PROD
Subtraction –
Addition + SUM

= EQUAL?
<

Equality/inequality

>

SECTION TWENTY-FOUR – ARITHMETIC

119

Prefix Operations

ARCTAN n operation

Outputs the value in degrees of the arctangent of n.

PR ARCTAN 1

45

Arcsines and arcosines may easily be derived as follows:

TO ARCSINE :X

OP ARCTAN :X / (SQRT 1 – :X ✻ :X)

END

TO ARCCOSINE :X

OP ARCTAN (SQRT 1 – :X ✻ :X) / :X

END

COS n operation

Outputs the Cosine of n degrees.

PR COS 60

.5

EQUAL? object1 object2 operation

Outputs TRUE if object1 and object2 are identical numbers,
identical words, or identical lists; otherwise outputs FALSE.
Equivalent to the infix operation: object1 = object2. EQUAL?
is both a logical and an arithmetic operation, as it accepts
boolean values (TRUE and FALSE) as well as numbers as
inputs.

PR EQUAL? FIRST “ORANGE FIRST “OGLE

TRUE

PR EQUAL? ITEM 3 [SHERGAR SECRETO TROY TULYAR MORSTON] ITEM

2 [ROME TROY CARTHAGE]

TRUE

PR EQUAL? (7 ✻ 3) (2 ✻ 11)

FALSE

IF EQUAL? 27 (COUNT “TEA) ✻ (SQRT 81) [PRINT TRUE] [PRINT FALSE]

TRUE

PR EQUAL? 10E2 1000

TRUE

SECTION TWENTY-FOUR – ARITHMETIC

120

INT n operation

Outputs the next whole number (INTeger) below real number
n by removing any decimal fraction. Note watch out for the
operation INT on negative numbers.

PR INT 5.2129

5

PR INT 5.6

5

PR INT –5.5

–6

PROD a b
(PROD a b . . . n) operation

Outputs the product of the inputs. It is equivalent to the infix
operation ✻. If PROD has more than two inputs, parentheses
must enclose PROD and its inputs.

PR PROD 5 5

25

PR (PROD 5 5 2)

50

TO CUBE :X

OP (PROD :X :X :X)

END

PR CUBE 2

8

QUOT a b operation

Outputs the integer quotient obtained by dividing b into a,
and removing any decimal fraction.

PR QUOT 6 3

2

PR QUOT 5.3 1.7

3

PR 5.3 / 1.7

3.11764706

PR 6.3 / 1.7

3.70588235

SECTION TWENTY-FOUR – ARITHMETIC

121

PR QUOT 6.3 1.7

3

PR QUOT 25 0

QUOT DOESN’T LIKE 0 AS INPUT

RANDOM n operation

Outputs a RANDOM integer between 0 and (n – 1). The
input n must be an integer. RANDOM 6 could output 0 1 2
3 4 or 5.

TO DICE

OUTPUT 1 + RANDOM 6

END

IF DICE = 6 [START]

Note: RANDOM 6 + 1 would return any of 0 1 2 3 4 5 6,
because the + takes precedence over RANDOM and would
be evaluated first, giving RANDOM 7. The alternative to the
form shown would be OUTPUT (RANDOM 6) + 1

REMAINDER a b operation

Outputs the integer REMAINDER when a is divided by b. If
the REMAINDER is a real number it is ROUNDED to output
the nearest integer.

PR REMAINDER 16.7 4.3

4

PR REMAINDER 16.7 4.1

0

PR REMAINDER 16.7 4.2

4

PR REMAINDER 88 9

7

Here is a procedure to test whether one integer is exactly
divisible by another:

TO DIVISOR? :INT1 :INT2

OP 0 = REMAINDER :INT1 :INT2

END

PR DIVISOR? 6 4

FALSE

SECTION TWENTY-FOUR – ARITHMETIC

122

ROUND n operation

Outputs the nearest integer to n. Compare these examples
with INT:

PR ROUND 5.219

5

PR ROUND 5.5

6

PR ROUND –5.3

–5

SIN n operation

Outputs the sine of n degrees.

PR SIN 30

.5

SQRT n operation

Outputs the square root of n. n must be positive.

PR SQRT 4567

67.5795827

See the procedure DIST in the toolkit.

SUM n
(SUM a b . . . n) operation

Outputs the sum of the inputs. It is equivalent to the infix
operation +. If SUM has more than two inputs, parentheses
must appear around SUM and its inputs.

PR (SUM 5 2 3)

10

PR SUM (4 / 2) (7 ✻ 3)

23

TAN n operation

Outputs the tangent of n degrees.

SECTION TWENTY-FOUR – ARITHMETIC

123

Infix Operations

Although it is not necessary, it is good practice to leave a
space both before and after an infix operator. Take especial
care with the minus sign (–).

a + b operation

The plus sign (+) outputs the sum of two inputs a and b.

PR 5 + 2

7

PR –5 + 2

–3

a – b operation

The minus sign (–) outputs the difference between the
inputs a and b.

PR 7 – 2

5

PR –7 – 3

–10

PR –7 – –2

–5

Note: Be careful of the minus sign (–). The same character
is used to represent three different things.:

1. Part of a number to indicate that it is negative, as in –3,
with no space between the sign and the digit.

2. A procedure taking one input, called unary minus, which
outputs the additive inverse of its input, as in –XCOR or
–:NUM.

3. An infix procedure of two inputs, as here, outputting the
difference between its first input and its second.

SECTION TWENTY-FOUR – ARITHMETIC

124

a ✻ b operation

The multiplication sign (✻) outputs the product of two inputs
a and b.

PR 6 ✻ 2

12

PR 6 ✻ –2

–12

PR 2 + 3 ✻ 4

24

PR (2 + 3) ✻ 4

20

a / b operation

The division sign (/) outputs the dividend of a and b (a
divided by b). The output is a real number with no
remainder.

PR 5 / 2.5

2

PR 5.3 / 2.1

2.52380952

PR 6 / 0

/ DOESNT LIKE 0 AS INPUT

a < b operation

The “less-than” sign (<) outputs TRUE if a is less than b.
The inputs must be numbers.

PR 8 < 9

TRUE

PR 9 < 9

FALSE

If one wished to use the less-than and greater-than signs to
sort words by their initial letters, one might use the
construction:

IF (ASCII :LET1) < (ASCII :LET2) [. . . .

SECTION TWENTY-FOUR – ARITHMETIC

125

a > b operation

The “greater-than” sign (>) outputs TRUE if a is greater than
b. Both inputs must be numbers:

PR 6.789 > 6.788

TRUE

object1 = object2 operation

The equals sign (=) outputs TRUE if object1 is equal to
object2. Unlike > and <, the inputs need not be numbers,
they can be any logo objects (words or lists). It is equivalent
in every way to the prefix operation EQUAL?

PR 80 = 100 – 20

TRUE

PR 80 = 100 –20

FALSE

YOU DON’T SAY WHAT TO DO WITH –20

Further Operations For Toolkit

TO MAX :A :B

OP IF :A > :B [:A] [:B]

END

TO MIN :A :B

OF IF :A < :B [:A] [:B]

END

TO BALRAN :DEL

OP :DEL – RANDOM (2 ✻ :DEL + 1)

END

TO FACTORIAL :NUMBER

IF :NUMBER = 1 [OUTPUT :NUMBER]

OUTPUT :NUMBER ✻ (FACTORIAL

:NUMBER – 1)

END

TO EXPONENT :NUMBER :POWER

IF :POWER = 0 [OUTPUT 1]

OUTPUT :NUMBER ✻ (EXPONENT

:NUMBER :POWER – 1)

END

SECTION TWENTY-FOUR – ARITHMETIC

126

TO XOR :PRED1 :PRED2

OP NOT EQUAL? :PRED1 :PRED2

END

TO MULT :NUM :LIST

IF EMPTY? :LIST [OP []]

OP FPUT :NUM ✻ FIRST :LIST

MULT :NUM BF :LIST

END

TO LINEMULT :LIST1 :LIST2

IF EMPTY? :LIST1 [OP []]

OP FPUT MULT FIRST :LIST1 :LIST2

LINEMULT BF :LIST1 :LIST2

END

TO ABS :NUM

IF :NUM > 0 [OP :NUM]

 [OP –:NUM]

END

TO PI

OP 3.1415927

END

Computers do not do arithmetic quite as we do, especially when
they are dealing with real numbers, with decimal fractions. They
are constantly truncating, and rounding numbers. Computer
arithmetic is accurate only to a limited degree of precision. For
example, Type

PR EQUAL? (SIN 30) * (SIN 30) + (COS 30) * (COS 30) 1

This will sometimes return TRUE and sometimes FALSE. This is
true of BASIC as well as Logo, but we think it is important to
recognise the fact, and not to regard it as a disgraceful or
shameful bug. It is the nature of finite computer arithmetic.

127

SECTION TWENTY-FIVE – EDITING

There are two ways of defining procedures, as we saw in
the introduction. At toplevel, working directly into the
workspace, you can define procedures using the primitive TO
name. (for a third method, which is occasionally needed, see
SETWRITE in Section 28 dealing with the Outside World).

It is often more convenient to define procedures inside the
EDITOR, which reserves a special area of the computer’s
memory, the edit buffer, for building and changing
procedures. In the EDITOR you can move the cursor keys
about, write words onto the screen, and press the return
key, without bringing any procedure to life. Logo does not
execute instructions when in the EDITOR.

You will also find the keys work differently when you are in
the EDITOR. The arrow keys, for example, can be used to
drive the cursor around the screen. Because the EDITOR has
its own reserved part of the computer’s memory, the edit
buffer, it can also be used as a temporary storage place for
procedures, when changing MODE, for example.

EDALL command

This command moves everything currently in your workspace
into the EDIT buffer, which holds 1,500 characters. If there is
an overflow, EDALL moves in as much as it can, before
reporting OUT OF SPACE. You can then SAVE onto a disk if
necessary. For a detailed description of the editor, see
below.

EDIT (ED)
EDIT (ED) name
EDIT (ED) namelist command

Typing EDIT takes you into the EDITOR. The screen changes,
and you see a line across the bottom of the screen.

LOGO EDITOR
^C <exit> ESC <abort>

The cursor (now a flashing square) will be at the top
left-hand corner, ready for you to begin typing. If you have

SECTION TWENTY-FIVE – EDITING

128

not used the EDITOR before, there will be nothing written
on the screen. If you have used the EDITOR previously, you
will see exactly the same words as were there when you
left it.

If you use the form

EDIT name

you clear the edit buffer of whatever was stored there. For
example,

ED “SQUARE

and, provided you had previously defined SQUARE or loaded
into your workspace from disk or cassette, Logo will have
the definition waiting for you in the EDITOR. If there is no
procedure SQUARE in the workspace, you will read:

TO SQUARE

END

at the top of the screen, all ready for you to type the
definition. You will find it very easy to change lines, insert
words, and generally mess around with your procedures.

If you have made a global variable, say SHIPS and then want
to add some more, you can type

EDIT [“SHIPS]

Logo will take you into the Editor and you might find:

MAKE “SHIPS [CANBERRA QE2 SHEFFIELD BELGRANO]

Remember, Logo knew you were referring to a variable name
and not a procedure name, because [“SHIPS] was written
with quotes (“) inside a list.

The four ARROW keys move the cursor one space in each
direction, up, down, right and left. SHIFT ARROW keys (ie
press the SHIFT key and the ARROW key simultaneously)
move the cursor to the top of the page, to the bottom of
the page, to the beginning of the line, and to the end of the
line.

The delete key deletes the character to the left of the
cursor, just as it does at top level, but there are other
function keys, which wipe out whole lines, move the cursor
to the end of the buffer, or to the beginning, if you have
more than one page in the EDITOR at the time.

SECTION TWENTY-FIVE – EDITING

129

The most novel feature of the Logotron Logo’s EDITOR is
the FIND & REPLACE function. Press the F9 key, the
rightermost of the red keys at the top of the keyboard. The
words

FIND:
REP:

will appear at the bottom of the screen below the line of
dashes, with the cursor positioned in front of the FIND. You
type in the word or string of words you want replaced, press
the RETURN key, and the cursor moves down a line. Type in
the word or words you want to insert instead of the first
string. Press RETURN and the substitution will be made. For
example, imagine the procedure SQUARE was in the
EDITOR.

TO SQUARE :SIDE

REPEAT 4 [FD 200 RT 90]

END

You realise that you should have written FD :SIDE instead of
FD 200. So you press F9.

FIND: FD 200

REP: FD :SIDE

Press RETURN and you will see

TO SQUARE :SIDE

REPEAT 4 [FD :SIDE RT 90]

END

If there had been further instances of the same substitution
required, you would have executed the first, and then
pressed the COPY key, followed by F9.
The F8 key performs a simple FIND without a REP line. In
other respects it works in the same way.

Note. Before pressing the F8 or F9 keys, be sure the cursor
is at the beginning of the text to be searched as Logo scans
forward from the cursor.

From the example given above, it might seem hardly
worthwhile. The real benefit can be seen when you have a
large number of linked procedures in the EDITOR
simultaneously, and want to change variable names, for
example, or the name of a procedure which is called a
number of times.

SECTION TWENTY-FIVE – EDITING

130

SUMMARY OF EDITOR COMMANDS

LEFT ARROW (8) moves the cursor one
character position to the left;

RIGHT ARROW (:) moves the cursor one character
position to the right;

DOWN ARROW (;) moves the cursor down one line;

UP ARROW (9) moves the cursor up one line;

SHIFT LEFT ARROW (8) moves the cursor to the
beginning of the current line;

SHIFT RIGHT ARROW (:) moves the cursor to the end
of the current line;

SHIFT DOWN ARROW (;) moves the cursor to the end
of the current page;

SHIFT UP ARROW (9) moves the cursor to the
beginning of the current page;

DELETE erases the character to the
left of the cursor;

F0 erases the character at
the cursor position;

F1 erases text from the cursor
position to the end of the
current line and places it
in the kill buffer;

SECTION TWENTY-FIVE – EDITING

131

F2 inserts the text from the kill
buffer at the cursor position;

F3 moves cursor to next page;

F4 moves cursor to previous page;

F5 scrolls screen to place current
line at its mid point;

F6 moves cursor to the beginning
of Edit Buffer;

F7 moves cursor to the end of
the Edit Buffer;

F8 FIND

COPY F8 repeats the last FIND command;

F9 FIND and REPLACE

COPY F9 repeats the last FIND
and REPLACE command;

CTRL C Exit from Editor, executing
changes in the workspace;

ESCAPE Aborts editing, leaves workspace
unchanged, and contents
of Editor intact

SECTION TWENTY-FIVE – EDITING

132

To load a number of procedures into the edit buffer together,
type:

ED [PROC1 PROC2 PROC3 . . . PRONn]

This is particularly useful when you want to move procedures
temporarily into the edit buffer when changing modes. For
example:

PR MODE

4

ED [POLYSPI SQUARE CIRCLE FACE FOREVER MOVETO FLOWER]

Ctrl C

ERALL

SETMODE 2

ED

Ctrl C

PR MODE

2

This is an example. You could not try it out without first
writing a collection of procedures to switch in and out of the
EDITOR.

However, the EDITOR isn’t only for procedures. You can also
write and edit variable assignment statements:

MAKE “CITIES [ROME PARIS BONN]

MAKE “SQS [1 4 9 16 25 36 49 64]

or Logo commands

REPEAT 10 [FD 100 RT 90 FD 100 LT 90]

When you leave the EDITOR by typing Ctrl C, Logo reads
each line in the Edit buffer. If it is part of a procedure,
enclosed between TO . . . END, it will be incorporated into
the Logo workspace, and Logo will tell you which procedures
have been DEFINED. These may include some which already
existed but have been modified in the EDITOR.

Logo will also tell you which variable names have been
defined or redefined in the EDITOR.

If it comes across a list of instructions in the edit buffer, it
will simply RUN them, as if they had been typed in at top
level.

SECTION TWENTY-FIVE – EDITING

133

If for any reason, you do not want to incorporate the
contents of the edit buffer into your workspace, you can
leave the EDITOR by pressing the ESC key, which aborts the
edit without making any changes to your workspace.

END special word

END is necessary, when you are using TO, to tell Logo that
you are done defining the procedure. It must be on a line by
itself. However, if you leave off END when writing a
procedure in the EDITOR, Logo will put it on for you. END is
neither a command nor an operation. It is really just a signal
to Logo that it has finished executing a procedure. If you just
type END, Logo complains:

YOU ARE AT TOP LEVEL

TO name input1 input2 . . . inputn command

TO tells Logo that you are defining a procedure called name,
with inputs (if any) as indicated. At toplevel, the prompt
changes from a question mark (?) to a greater-than sign (>)
to remind you that you are defining a procedure. This special
prompt will remain on the screen, every time you press the
RETURN key, until you have written a line with the special
word END on its own, to tell Logo that the procedure is
complete.

If you have already defined a procedure, say REVERSE, and
then type: TO REVERSE :L You will receive a Logo message:

REVERSE IS ALREADY DEFINED

You get the same message if you try to define a procedure
with the name of a primitive, for example:

TO FORWARD

134

SECTION TWENTY-SIX – FLOW OF CONTROL

Logo is an interpreted language, which means that it reads
procedures line by line, following the instructions as it meets
them. If a procedure contains a call to a subprocedure, Logo
reads the lines of the subprocedure before continuing to
finish the superprocedure.

For example, let us imagine a call to SUPERPROCEDURE.
This is executed as follows: line1 line2 line3 . . . , where it
meets a call to SUBPROCEDURE, which it executes as
follows: line1 line2 END , it then returns to line3 of the
SUPERPROCEDURE and continues . . . line3 line4 END

The phrase Flow of Control refers to the order in which Logo
follows instructions. There are times when you want to
interfere with Logo’s normal way of doing things. There are
several ways of doing this. Let’s look at them:

Conditional instructions tell Logo to execute a particular
instruction or list of instructions, IF a particular condition is
TRUE.

REPEAT instructions tell Logo to execute a list of instructions
2 or more times.

The STOP, OP or TOPLEVEL instructions tell Logo to
STOP the current procedure without continuing to the END.
STOP and OP only halt the procedure in which they
appear. If that procedure is a subprocedure, the
superprocedure continues to run. TOPLEVEL stops the
superprocedure too, and returns control to the user.

IF pred instructionlist1 instructionlist2
command or operation

IF is a very powerful Logo primitive. The first input it needs
is a predicate. A predicate is a statement which can be
tested by the computer to be either TRUE or FALSE. Here
are some Logo primitives which can be tested in this way:

EMPTY? object
EQUAL? object1 object2
LIST? object
MEMBER? object list
NAME? word

SECTION TWENTY-SIX – FLOW OF CONTROL

135

NUMBER? object
WORD? object
num1 > num2
num1 < num2
object1 = object2

You can create your own procedures which perform similar
functions. We have shown in this manual (Section 24),
VOWEL? letter and DIVISOR? num1 num2.

All that is needed is a procedure which will OUTPUT either
TRUE or FALSE to IF.

If the predicate outputs TRUE, then Logo executes the list of
instructions enclosed in square brackets immediately
following, [Instructionlist1]. If the predicate outputs FALSE,
Logo looks to see if there is a second list of instructions on
the line. If there is, it executes [Instructionlist2].

If there is no second list, then Logo passes on to the next
line. There are many examples of the use of IF in the
sample procedures in this manual. It is hard to write
procedures without the word, especially when it comes to
stopping recursive procedures.

IF you are familiar with other computer programming
languages, THEN you will recognise the IF . . . THEN . . .
ELSE construction, ELSE this paragraph may help you
understand it.

IF is one of only two Logo primitive procedures, which
sometimes work as a command, and sometimes as an
operation. As we saw in the introduction, a procedure is an
operation if it outputs a value, a command if it does not
output a value. Look at these three versions of the DECIDE
procedure. In every case the procedure returns the answer
YES or NO, at random. Every parent needs one.

If as a command:

TO DECIDE

IF 0 = RANDOM 2 [OP “YES]

OP “NO

END

TO DECIDE

IF 0 = RANDOM 2 [OP “YES] [OP “NO]

END

SECTION TWENTY-SIX – FLOW OF CONTROL

136

If as an operation:

TO DECIDE

OP IF 0 = RANDOM 2 [“YES] [“NO]

END

PR DECIDE

NO

REPEAT 5 [PR DECIDE]

YES

YES

NO

YES

NO

OP object command

Unlike most other commands, OP cannot be used at
top level (STOP and TOPLEVEL are the other examples), only
inside a procedure. This is not really surprising because the
effect of all three procedures is to interrupt a running
procedure, and they could therefore have no meaning at top
level. OP makes object the OutPut of the running
procedure, and returns control to the caller.

Note: OP itself is a command, but the procedure
containing it is an operation because the procedure outputs a
value to another procedure, which could be a primitive, typed
at top level, or it could be another running procedure.

This can be clearly seen in the DECIDE procedures shown in
the discussion of IF above.

If one simply typed DECIDE, A Logo message would
complain:

YOU DON’T SAY WHAT TO DO WITH YES

DECIDE has to OP to a command like PRINT. Once a
value has been OP, the procedure has done its work,
and the flow of control goes back, either to top level, or to a
superprocedure, which called the subprocedure containing
OP. For this reason, it has a similar effect to STOP.

OP can be used to return any Logo object as its value.

SECTION TWENTY-SIX – FLOW OF CONTROL

137

Examples:

TO FRANCE

OP [PARIS IS THE CAPITAL OF FRANCE. FRANCOIS MITTERRAND IS THE

PRESIDENT OF THE REPUBLIC]

END

PR FRANCE

PARIS IS THE CAPITAL OF FRANCE. FRANCOIS MITTERRAND IS THE

PRESIDENT OF THE REPUBLIC

TO CUBE :N

OP (PROD :N :N :N)

END

CUBE 6

YOU DONT SAY WHAT TO DO WITH 216

REPEAT n instructionlist command

Repeats a list of instructions n times; n must be a positive
integer, so a decimal fraction is truncated to an integer. Note
n can be output from an operation:

REPEAT 4 [FD 100 RT 90]

TO POLY :SIDE :ANGLE

REPEAT 360 / :ANGLE [FD :SIDE RT :ANGLE

END

TO LETTERSQUARE

REPEAT COUNT :ALPHABET [PRINT :ALPHABET]

END

RUN instructionlist command or operation

With a Logo list as its input, RUN executes the list as if it
were a Logo line. If the instruction list is an operation, then
RUN behaves as an operation and outputs whatever has
been output to it by the instructionlist.

TO CALCULATOR

PRINT RUN READLIST

PRINT []

CALCULATOR

END

SECTION TWENTY-SIX – FLOW OF CONTROL

138

CALCULATOR

2 + 3

5

17.5 ✻ 3

52.5

42 = 8 ✻ 7

FALSE

The ESCAPE key takes you out of the otherwise endless loop.

RUN [PR [GOOD MORNING]

GOOD MORNING

The procedure WHILE runs a list of instructions while a
specified condition is true.

TO WHILE :CONDITION :INSTRUCTIONLIST

IF NOT RUN CONDITION [STOP]

RUN :INSTRUCTIONLIST

WHILE :CONDITION :INSRUCTIONLIST

END

WHILE [YCOR < 100] [FD 25 PR YCOR]

25

50

75

100

You will sometimes find a use for the procedure FOREVER
(see BOXES and PHRASEBOOK in Section 18 of the manual).

TO FOREVER :INSTRUCTIONLIST

RUN :INSTRUCTUCTIONLIST

FOREVER :INSTRUCTIONLIST

END

FOREVER [FD 10 RT 1]

sends the turtle around an endless circle.

FOREVER [PR RUN RL PR []]

is the equivalent of the CALCULATOR procedure.

STOP command

Stops the procedure running and returns control to the caller.
The command STOP works only from inside a procedure,
and has no effect on other procedures. It is often used as

SECTION TWENTY-SIX – FLOW OF CONTROL

139

the brake on recursive procedures (see also OP and
TOPLEVEL):

TO POLYSPI :SIDE :ANGLE

IF :SIDE < 10 [STOP]

FD :SIDE RT :ANGLE

POLYSPI :SIDE – 5 :ANGLE

END

TO COUNTDOWN :NUM

PR :NUM

IF :NUM = 0 [PR [BLAST OFF!] STOP]

COUNTDOWN :NUM – 1

END

COUNTDOWN 4

4

3

2

1

0

BLAST OFF!

TOPLEVEL command

TOPLEVEL works in exactly the same way as STOP, except
that it returns control to top level, and does not just stop the
currently running procedure, but also any superprocedures.
Once Logo meets TOPLEVEL in a program, it returns control
to the user. The next thing you see is the ? prompt, and
Logo is waiting for you to do something. For example,
compare:

TO LOOKFOR1 :X :L

IF EMPTY? :L [STOP]

IF :X = FIRST :L [MAKE “OBJ :L STOP]

LOOKFOR1 :X BF :L

END

LOOKFOR1 “Z “AZBCZXY

PR :OBJ

ZXY

with: LOOKFOR2 :X :L

IF EMPTY? :L [STOP]

IF :X = FIRST :L [MAKE “OBJ :L TOPLEVEL]

LOOKFOR2 :X BF :L

END

SECTION TWENTY-SIX – FLOW OF CONTROL

140

LOOKFOR2 “Z “AZBCZXY

PR :OBJ

ZBCZXY

The difference is that once LOOKFOR2 has found a condition
which satisfies the predicate in the third line (IF :X = FIRST
:L) it makes the required assignment and returns control to
the user. LOOKFOR1 hunts on for another instance.

TRACE n command

The TRACE command allows you to look right into the
workings of a Logo procedure, showing you how the values
of variables change, and the inputs and outputs of each
operation. For example, enter the following procedure:

TO REPLACE :NEW :OLD :OBJ

IF EMPTY? :OBJ [IF WORD? :OBJ [OP “] [OP []]]

IF LIST? :OBJ [IF EQUAL? :OLD FIRST :OBJ [OP FPUT :NEW REPLACE

 NEW :OLD BF :OBJ] [OP FPUT FIRST :OBJ REPLACE :NEW :OLD BF :OBJ]]

IF WORD? :OBJ [IF EQUAL? :OLD FIRST :OBJ [OP WORD :NEW REPLACE

 NEW :OLD BF :OBJ] [OP WORD FIRST :OBJ REPLACE :NEW :OLD BF

 :OBJ]]

END

Then type

TRACE

PRINT REPLACE “E “A “BEAR

PRINT REPLACE “PLUM “APPLE [ORANGE PEAR APPLE LEMON]

The TRACE command is activated by typing TRACE. After that,
all Logo operations are traced on the screen. Typing TRACE
a second time switches it off and returns Logo to normal
working. This is very useful when debugging a procedure. It
is also helpful when learning about how recursion works on
lists.

WAIT n command

Tells Logo to WAIT for n 60ths of a second before executing
the next instruction. Example:

TO SLOWFD :DIST

REPEAT :DIST [FD 1 WAIT 2]

END

SLOWFD 80

141

SECTION TWENTY-SEVEN – AND, OR, NOT

In the description of the primitive IF in the last Section, we
discussed the concept of a predicate, which had to output
either TRUE or FALSE to IF, in order to establish whether
Logo should next execute [instructionlist1] or [instructionlist2].
We are now going to discuss three predicates, whose inputs,
like their outputs, must be the boolean values TRUE or
FALSE. They are AND, OR and NOT. They are used to
combine predicates into logical expressions.

This is similar to the way arithmetic operations are combined
to form arithmetic expressions. Just as arithmetic operations
have numbers as both their inputs and their outputs, so
logical operations have only TRUE or FALSE as their inputs
and outputs. In fact, TRUE and FALSE behave very like
numbers, and can easily be represented as 1 and 0, ON and
OFF, and so on. This has made them especially valuable to
people who make computers or write computer programs.

The Logo primitives, which, with their inputs, form predicates
are listed in Section 26 dealing with Flow of Control in the
description of IF. It is slightly artificial to confine our
discussion of Logical Operations to these few primitives.
Most Logo operations are “logical”, and one needs to
consider the relationship of AND, OR and NOT to the
Arithmetical Operations and the Flow of Control.

AND pred1 pred2
(AND pred1 pred2 pred3 predn) operation

Requires two or more inputs. AND outputs TRUE if all its
inputs are TRUE, otherwise FALSE. If there are more than 2
inputs, AND and its inputs must be enclosed in parentheses.
For example:

PRINT AND TRUE TRUE

TRUE

PRINT AND TRUE FALSE

FALSE

PRINT 4 ✻ 4 = 16

TRUE

PRINT 12 / 3 = 4

TRUE

SECTION TWENTY-SEVEN – AND, OR, NOT

142

PRINT AND (4 ✻ 4 = 16) (12 / 3 = 4)

TRUE

Note: the parentheses in the last example are unneccessary,
but make for easier reading.

TO EVEN? :OBJ

OP AND NUMBER? :OBJ CHECK :OBJ

END

TO CHECK :OBJ

OP 0 = REMAINDER :OBJ 2

END

This pair of procedures could be used to check whether a
Logo object was an even number. It is quite a useful
convention to label procedures which can be used as
predicates by ending their names with a ?. They all output
TRUE or FALSE (eg EMPTY? MEMBER? NUMBER? etc).

Some teachers believe children find ALL.OF list an easier
concept than AND with more than two inputs. It is easy to
construct:

TO ALL.OF? :L

IF RUN SE SE [(AND] :L “) [OP TRUE] [OP FALSE]

END

PR ALL.OF? [TRUE (4 / 2 = 2) (5 ✻ 5 = 25) FIRST “GREEN = “G]

TRUE

FALSE boolean value

FALSE, like TRUE, is a boolean value. It is neither a
command nor an operation, but is the input/output of logical
operations. It behaves rather like a number, and therefore
does not require QUOTES in front of it. As with numbers
QUOTES are optional.

PR FALSE = “FALSE

TRUE

NOT predicate operation

Outputs TRUE if the predicate is FALSE and FALSE if the
predicate is TRUE

PR NOT EQUAL? “A “Z

TRUE

SECTION TWENTY-SEVEN – AND, OR, NOT

143

PR NOT 4 > 3

FALSE

PR NOT VOWEL? “A

FALSE

OR pred1 pred2
(OR pred1 pred2 pred3 . . . predn) operation

Outputs true if any of the predicates is true. If OR has more
than two inputs, parentheses must enclose the primitive and
its inputs. Examples:

PRINT OR TRUE TRUE

TRUE

PR OR TRUE FALSE

TRUE

PR OR FALSE FALSE

FALSE

PRINT OR 4 ✻ 4 = 16 2 = 3

TRUE

PRINT (OR FIRST “BEE = “B 3 ✻ 5 = 12 8 = 4 / 3)

TRUE

Again, some teachers would prefer to formulate (OR pred1
pred2 ...predn) as ANY.OF list. This is easily constructed:

TO ANY.OF? :LIST

IF EMPTY? :LIST [OP FALSE]

IF FIRST :LIST [OP TRUE]

ANY.OF BF :LIST

END

TRUE boolean value

TRUE is a boolean value, acting as input/output for logical
operations. See FALSE.

144

SECTION TWENTY-EIGHT – OUTSIDE WORLD

When your BBC micro is running Logo it is really a different
“machine” from when it is running BASIC. When people
used the word machine before computers were invented,
they meant a physical object, made of metal, wood or
plastic, usually with moving parts, which had physically
measurable inputs and outputs.

Computer folk use the word machine in a rather different
way. They are talking about a combination of physical
objects, which you can see and touch (hardware), and non-
physical objects, which exist, but cannot be seen or touched
(software). This machine needs some physical inputs like
energy and may produce physical outputs like marks on
paper, but the most important inputs and outputs are
abstract, words and numbers. You know what the number
five is; you can write it down, but you cannot see the thing
which is represented by the name 5.

The Logo machine consists of a series of instructions, which
are written in a 16K ROM chip inside your computer,
interacting with the hardware of the BBC Micro. As you use
it the Logo machine grows, occupying the workspace with
new procedures (instructions) written by you. It also grows
inside your head, as you grow more fluent in the language.

The “Outside World ”, which we are talking about in this
section heading, consists partly of other programs (sets of
instructions) living in the BBC Micro (the operating system
and the disk filing system), and partly of the hardware itself,
the computer, the monitor, disc drives or cassette recorders,
printers, floor turtles, robots, sprite boards, or any other
devices you invent or buy.

In fact, we have already looked at part of the outside world
in the first section dealing with turtle graphics. Turtle
graphics are a good way of learning to program because your
programs are working on a microworld, consisting of the
monitor screen, with a single inhabitant, the turtle, and you
can quite easily understand and control its state and
behaviour (changing states).

SECTION TWENTY-EIGHT – OUTSIDE WORLD

145

✻suffix command

As well as being an infix arithmetic operation, the asterisk
(✻) is the prefix to a whole series of commands which allow
you to control the BBC operating system. These are
summarised on pages 416 & 417 of the BBC User Guide.

Perhaps the most important for you are

✻LOGO, which takes you from BASIC or, say, WORDWISE into
Logo, and ✻B., which takes you out of Logo into BASIC. ✻W.
takes you into WORDWISE. ✻LOGO cannot be abbreviated to
✻L. as the computer would confuse the command with
✻LOAD. ✻CAT displays a catalogue or directory of files stored
on your disk or cassette. Watch our for ✻.1, which in BASIC
would also give you details of the contents of a disk on a
particular drive. You must type ✻.\1. The backslash ensures that
Logo simply passes the number to the operating system.

You will find many uses for other STAR commands as you
explore the system. Here are two examples:

Teachers of young children can often help them better if
they know exactly what they are doing at the keyboard. The
following procedure (which existed as a primitive on the
original mainframe Logo systems) allows you to capture
every keystroke of a Logo session as a file which can be
printed out afterwards:

TO DRIBBLE :FILENAME

✻SPOOL :FILENAME

END

TO UNDRIBBLE

✻SPOOL

END

The following procedure is a useful one because you cannot
SAVE a file to disk with the same name as an existing file.
This is a nuisance if you simply want to replace an old
version with a new version. I use

TO REFILE :FILENAME :PROCNAMELIST

✻DELETE :FILENAME

SAVE :FILENAME :PROCNAMELIST

END

SECTION TWENTY-EIGHT – OUTSIDE WORLD

146

One omission from the list of primitive procedures is
SAVEPICT, together with its partner LOADPICT. They were
left out, partly because of lack of space in the 16k ROM,
and partly because the BBC operating system makes it very
easy for you to write your own SAVEPICT and LOADPICT.
See p.392 in the BBC User Guide and p.460ff in the
Advanced User Guide for the BBC Micro. The procedures
which follow will do the job for you. Please note, if you
make a picture in one mode, SAVE it, and LOAD it in
another MODE, you will get some strange but often
interesting results. One way of keeping track of the original
MODE is to include in the name of :PICT, say TREE5 or
HOUSE4, to show that the TREE was originally drawn in
MODE 5 and HOUSE in MODE 4.

TO SAVEPICT :PICT

IF (OR EQUAL? MODE 3 EQUAL? MODE 6 EQUAL MODE 7)

[PR [SAVEPICT MAY NOT BE USED IN THIS MODE]]

IF (OR EQUAL? MODE 0 EQUAL? MODE 1 EQUAL? MODE 2)

[✻SAVE :PICT 3000 8000]

IF OR EQUAL? MODE 4 EQUAL? MODE 5

[✻SAVE :PICT 5800 8000]

END

TO LOADPICT :PICT

IF (OR EQUAL? MODE 3 EQUAL? MODE 6 EQUAL MODE 7)

[PR [LOADPICT MAY NOT BE USED IN THIS MODE]]

HT

IF (OR EQUAL? MODE 0 EQUAL? MODE 1 EQUAL? MODE 2)

[✻LOAD :PICT 3000]

IF OR EQUAL? MODE 4 EQUAL? MODE 5

[✻LOAD :PICT 5800]

RUN :PICT

END

Warning : Some ✻ commands can crash Logo. In
particular, ✻COMPACT and ✻FORMAT, which load
programs off disk into RAM, overwrite areas of memory
used by Logo. This will not only wipe out procedures in
the workspace, it actually crashes Logo. SAVE your
Logo workspace to disk before using these commands.
Logo can be restored by pressing CTRL BREAK. This
resets the system, and you can load your workspace
back from disk. This is not a bug in Logo; it is an

SECTION TWENTY-EIGHT – OUTSIDE WORLD

147

inherent limitation of the BBC Micro. It should not
bother you unless you are not expecting it.

✻FX num1 num2 almost deserves a section on its
own, but again, it is better to go straight to the source,
and consult the BBC User Guide (p. 418 ff.). ✻FX is not
for novice users, and certainly not essential for
enjoyable and productive use of the computer.

The rules for incorporating ✻suffix or ✻FX calls in Logo
procedures are as follows. If they come at the beginning of a
Logo line or list, the remaining contents of that line or list are
passed to the operating system. If they are inserted in a line, the
command and its inputs should be enclosed in parentheses.
Inputs to ✻FX calls must be separated by commas, as they
would be in BASIC, (not by spaces). Logo variables can be
passed to these operating system calls. For example ✻DELETE
:NAME or ✻FX :A.

CT command

CT, for Clear Text, is the counterpart for the text screen of
CLEAN, which clears the graphics screen (see Section 21). It
clears the screen of text and places the cursor and prompt
(?) in the top lefthand corner of the screen, ready for
entering text. If you have a graphics screen displayed,
CT clears the text only from the text window.

CURSOR operation

CURSOR outputs the current position of the text cursor. As
with the graphics operation POS, position is a pair of
numbers. The first element of CURSOR gives the column
number, 0-79 in MODE 0, 0-39 in the other 7 MODES. The
second element gives the line number, 0-31 on the text
screen, and 0-7 below the graphics screen, in MODES 0-6,
0-24 in MODE 7. See SETCURSOR.

ENVELOPE num1 num2 num14 operation

See SOUND, below.

SECTION TWENTY-EIGHT – OUTSIDE WORLD

148

EOF? operation

The predicate EOF? stands for End Of File, and is used in
conjuction with SETREAD. It outputs TRUE if the end of file
has been reached, FALSE otherwise. For example:

TO CHECK

IF EOF? [STOP]

END

KEY? operation

Outputs TRUE it there is at least one key waiting to be read
on the keyboard or any other device set by SETREAD,
otherwise FALSE. The following procedure allows a child to
drive the turtle around the screen using just two keys
Q and P.

TO STEER

FD 2

IF KEY? [TURN RC]

WAIT 4

STEER

END

TO TURN :DIR

IF DIR = “Q [LT 30]

IF DIR = “R [RT 30]

END

LOAD filename command

LOADs the contents of filename into the workspace, as if
they were typed in directly from the keyboard. If filename
doesn’t exist, you will receive a Logo Message, advising you
of the fact. As procedures are loaded in, Logo will confirm
their presence by printing, for example:

SQUARE DEFINED

MOVETO DEFINED

MAP DEFINED

PRINT (PR) object command

PRINT prints its inputs on the screen (or on any other device
set by SETWRITE). When the object is a LIST, PRINT strips

SECTION TWENTY-EIGHT – OUTSIDE WORLD

149

off the outermost brackets. When the object is a word, the
QUOTES (“) are not printed.

Note. PRINT causes a linefeed to occur after the inputs have
been printed. This makes PRINT [] a simple way of leaving a
space between two lines of print. See SHOW and TYPE:

PRINT [GOOD MORNING]

GOOD MORNING

TO GREET :AGE

REPEAT :AGE [PRINT (SE [HAPPY BIRTHDAY TO YOU,] :AGE “TODAY!)]

END

GREET 5

HAPPY BIRTHDAY TO YOU, 5 TODAY!

HAPPY BIRTHDAY TO YOU, 5 TODAY!

HAPPY BIRTHDAY TO YOU, 5 TODAY!

HAPPY BIRTHDAY TO YOU, 5 TODAY!

HAPPY BIRTHDAY TO YOU, 5 TODAY!

RC command

Outputs the first character read from a device (set by
SETREAD) or the keyboard. This character is not echoed on
the screen. If no character is waiting to be read, READCHAR
waits until the user types something. The command is
frequently used to assign a value to a variable. For example:

TO RESPOND

PR [DO YOU WANT AN ICECREAM? TYPE YES/NO]

MAKE “ANSWER RC

IF :ANSWER = “Y [PR [GO TO THE ZOO AND LOOK FOR A POLAR

COW]] [PR [THAT’S A PITY, THERE’S A FRESH STRAWBERY

SUNDAE IN THE FRIDGE]]

END

See also RL. RC can also be used to build STEER (See KEY?
above). RC stands for Read Character.

When Logo meets the backslash (\), it treats the next character
literally, without reference to its meaning. This allows you to
create a procedure name consisting of two words. TO
BIG \ HOUSE, for example, would be accepted by Logo,
whereas TO BIG HOUSE would not.

SECTION TWENTY-EIGHT – OUTSIDE WORLD

150

RL command

Outputs the first line of words read from a device (set by
SETREAD) or the keyboard. This list is echoed on the screen.
If no list is waiting to be read, READLIST waits until the
user types something. If lists have already been typed, it
outputs the first line that has been typed but not read. The
command is frequently used to assign a value to a variable.
RL stands for Read List. For example:

MAKE “CAPITALS [[NIGERIA LAGOS][FRANCE PARIS] [INDIA DELHI]

[ARGENTINA BUENOS.AIRES] [ITALY ROME] [SPAIN MADRID]

TO QUIZ :CUE :LIST

WELCOME

MAKE “PAIR PICKRANDOM :LIST

PR (SE :CUE FIRST :PAIR “, WORD :CONTESTANT “?)

MAKE “ANSWER RL

IF :ANSWER = FIRST BF :PAIR [PR (SE [WELL DONE.] :CONTESTANT [DO

YOU WANT ANOTHER ONE?]) AGAIN]

PR (SE [BAD LUCK.] :CONTESTANT) [THE ANSWER IS] FIRST BF :PAIR)

AGAIN

END

TO PICKRANDOM :LIST

OP ITEM 1 + (RANDOM COUNT :LIST) :LIST

END

TO AGAIN

PR [DO YOU WANT ANOTHER ONE?]

PR [ANSWER YES/NO]

MAKE “ANSWER RC

IF :ANSWER = “Y [QUIZ]

END

TO WELCOME

PR [HELLO. WHAT IS YOUR NAME?]

MAKE “CONTESTANT RL

PR []

PR (SE “WELL WORD :CONTESTANT “, [LET’S GET ON WITH THE GAME!])

END

QUIZ [WHAT IS THE CAPITAL OF] :CAPITALS

SECTION TWENTY-EIGHT – OUTSIDE WORLD

151

HELLO. WHAT IS YOUR NAME?

HARRY

WELL HARRY, LET’S GET ON WITH THE GAME!

WHAT IS THE CAPITAL OF NIGERIA?

NAIROBI

BAD LUCK HARRY. THE ANSWER IS LAGOS. DO YOU WANT ANOTHER

ONE?

ANSWER YES/NO

This structure could be used to create an infinite number of
quiz programs. Please also note a stylistic point. The
WELCOME and AGAIN subprocedures could be included in
the QUIZ procedure, but AGAIN would create very long lines,
which would be hard to read. If WELCOME was part of the
procedure, it would be repeated if :CONTESTANT wanted
another turn. If a section of a procedure can be turned into a
subprocedure, it is usually worth it.

SAVE filename
SAVE filename procname
SAVE filename proclist
SAVE filename varnamelist command

SAVEs the contents of filename onto disk or cassette from
the workspace. If SAVE filename is used without specifying a
procname, proclist or varnamelist, the entire workspace will
be SAVED. For example, SAVE “SUSAN might be used to
save all the work in progress of a girl called Susan at the
end of her Logo session.

If Susan wanted only three of her procedures, she might
type SAVE “SUSAN [POLYSPI DRAGON WHILE]. On the
other hand, SAVE “SUSAN “HOUSE. saves a single
procedure called HOUSE. If filename already exists, you will
receive a Logo Message, advising you of the fact. (See ✻,
above, for the REPLACE procedure.)

SECTION TWENTY-EIGHT – OUTSIDE WORLD

152

In most other Logos, global variables could be saved only in
association with the procedures in which they were used, or
as part of a whole workspace. Logotron Logo allows you to
save global variables, using the same syntax as EDIT,
ERASE, and PO. For example.

MAKE “LANGUAGES [ALGOL FORTRAN PASCAL ADA FORTH LOGO LISP

POPLOG SNOBOL COBOL MAD MANIAC]

SAVE [“LANGUAGES]

You could save a mixture of procedures and variables in a
single list:

SAVE [SQUARE “LANGUAGES WELCOME “SHIPS]

You would have saved two procedures, and two variables. If
one of these names was incorrect, the whole SAVE would
abort, and you would be asked to start again.

SETCURSOR list command

SETCURSOR sets the cursor to list. As with the graphics
command SETPOS, the first element of list gives the column
number, 0-79 in MODE 0, 0-39 in the other 7 MODES. The
second element gives the line number, 0-31 on the text
screen, and 0-7 below the graphics screen, in MODES 0-6,
0-24 in MODE 7. For example, in MODE 4, textscreen
SETCURSOR [20 15] will place the cursor right in the middle
of the screen, and when you begin to type, that is where
the text will appear. See CURSOR, above.

Note . If you want to write on the graphics screen,
SETCURSOR does not work, and you have to use:

VDU (SE 5 :X :Y)

where :X and :Y are the coordinates on the graphics screen
at which you want to start writing, the text cursor and the
graphics cursor are joined together.

VDU [4] reverses the effect of VDU [5] and returns control to
the text cursor at its normal position below the Graphics
Screen.

SECTION TWENTY-EIGHT – OUTSIDE WORLD

153

SETREAD filename
SETREAD [] command

SETREAD is used for reading a file from disk or cassette.
Filename can be a program file or a data file created through
SETWRITE or DRIBBLE (see ✻suffix above). After the
command SETREAD is given, RC or RL read information
from filename. SETREAD [] closes the file being read. For
example:

SETREAD “CITIES

REPEAT 4 [PR [] PR RL] SETREAD []

DAKAR

DELHI

DJAKARTA

DUBLIN

You can only read from one file at a time, but you can open
a file for reading (SETREAD) and writing (SETWRITE) at the
same time.

SETWRITE filename
SETWRITE [] command

Opens a file named filename and sends a copy of all
characters appearing on the screen to that file. SETWRITE []
closes the file. Used together, SETWRITE and SETREAD can
be used to create databases for quiz games, address lists
and telephone numbers. They can also be used to define
procedures, which sometimes come as primitives in Logo
systems, but which could not be fitted into the Logotron 16k
ROM:

TO COPYDEF :NEWDEFINITION :OLDDEFINITION

MAKE “OLDDEFINITION TEXT :OLDDEFINITION

DEFINE :NEWDEFINITION (BF BF FIRST :OLDDEFINITION) (BF

:OLDEFINITION)

END

SECTION TWENTY-EIGHT – OUTSIDE WORLD

154

TO DEFINE :NAME :INPUT :LIST

SETWRITE “PROG

PRINT (SE “TO :NAME :INPUT)

PR.OUT :LIST

PR “END

SETWRITE []

LOAD “PROG

ERASEFILE “PROG

END

TO PR.OUT :LIST

IF EMPTY? :LIST [STOP]

PR FIRST :LIST

PR.OUT BF :LIST

END

TO TEXT :NAME

SAVE “PROG :NAME

SETREAD “PROG

OP FPUT BF BF RL READLINE []

END

TO READLINE :TEXT

MAKE “LINE RL

IF [END] = :LINE [ERASEFILE “PROG OP :TEXT]

OP READLINE LPUT :LINE :TEXT

END

TO ERASEFILE :FILENAME

✻DELETE :FILENAME

END

DEFINE “SPIRAL [[:SIZE :ANGLE] [FD :SIZE] [RT :ANGLE] [SPIRAL :SIZE +

15 :ANGLE]

would output

TO SPIRAL :SIZE :ANGLE

FD :SIZE

RT :ANGLE

SPIRAL :SIZE + 15 :ANGLE

END

While TEXT “SPIRAL would output:

[[:SIZE ANGLE] [FD :SIZE] [RT :ANGLE] [SPIRAL :SIZE + 15 :ANGLE]]

SECTION TWENTY-EIGHT – OUTSIDE WORLD

155

Another useful pair of procedures, STARTUP and COPY allow
you to create procedures on disk which can be run simply by
LOADing them into the workspace. The procedures also
demonstrate how SETREAD and SETWRITE can work
together.

TO STARTUP :FILENAME :STARTUPFILENAME :STARTPROC

:SCREENMODE

SETWRITE :STARTUPFILENAME

PR “ERALL

(PR “SETMODE :SCREENMODE)

SETREAD :FILENAME

COPY

PR :STARTPROC

SETWRITE []

END

TO COPY

IF EOF? [STOP]

PR RL

COPY

END

SHOW object command

SHOWs object on the screen, followed by a carriage return.
In fact, it works just like print, except that if object is a list,
it does not strip away the outermost brackets. For example:

SHOW “A SHOW [A B C]

A

[A B C]

PRINT “A PRINT [A B C]

A

A B C

TYPE “A TYPE [A B C]

AA B C

These examples clearly show the differences between
PRINT, TYPE and SHOW.

SECTION TWENTY-EIGHT – OUTSIDE WORLD

156

SOUND num1 num2 num3 num4 command

For a full discussion of the production of sound (music and
other noises) on the BBC micro, the user is referred to
pages 180-187 in the BBC User Guide. The inputs to sound
are numbers, which are not enclosed in a list. They appear
just as they do in BASIC (ie as described in the BBC User
Guide), but without commas between the numbers. eg

SOUND 2 –3 121 99

num1 (0 to 3) is the channel number

num2 (0 to –15) is the amplitude
num 3 (0 to 255) controls pitch
num4 (0 to 255) controls duration

The command ENVELOPE num1 num2 . . . num14 gives the
user even greater control over the possible sound effects.
For example:

TO TRIAL

ENVELOPE 2 1 2 –2 2 10 20 10 1 0 0 –1 100 100

SOUND 1 2 100 100

END

The possibilities are endless, and well explained in the BBC
User Guide. One could easily develop a library of noises,
each a procedure which could be called into a program to
create appropriate sound effects. One could imagine:
TRUMPETS SIREN TAKEOFF BIRDSONG GUNFIRE etc.

You could also use RC to turn the computer into a keyboard
instrument.

TS command

TS is the switch from the graphics screen to the
full text screen. It clears the screen of graphics, and places
the cursor and prompt (?) in the top lefthand corner of the
screen, ready for entering text. Anything (text or graphics)
displayed on the screen when this command is used will be
lost. TS is also the default value, and is displayed,
when you enter Logo. TS is therefore used to
clear any windows you may have created (see WINDOW,

SECTION TWENTY-EIGHT – OUTSIDE WORLD

157

Section 21 and VDU commands below). CS
switches you to the normal graphics screen, with a
seven-line text window below it.

TYPE object
(TYPE object1 object2 . . . objectn) command

Prints object or objects to the screen or other device, but
there is no linefeed once the printing is completed. If TYPE
has two or more inputs, then TYPE and all the inputs must
be enclosed in parentheses.

TYPE [A B C]

A B C

(TYPE [A B] [D E F] [G H I])

A B CD E FG H I

VDU list command

VDU is another primitive (like ✻suffix) which gives you direct
access to the BBC micro’s own operating system. The VDU
commands, as you might expect, all have to do with the
monitor (or Visual Display Unit). You may have already met
some VDU commands in this manual. You will certainly have
met VDU commands if you have been using the BBC
microcomputer for any length of time. They are described in
detail is Chapter 34 of the BBC User Guide (pp 377-389).

From a Logo users point of view, the important thing to
remember is that VDU takes a list of numbers as its input. If
you want one of those numbers to be generated by
evaluating a variable (:X :NUM :COL :LINE for example), you
must create the list with the operation SE. For example:

VDU SE (19 :X :Y 0 0 0)

SE outputs a list to VDU with :X and :Y properly evaluated
as numbers. If a number required as an input is greater than
255 and therefore occupies two bytes of memory, prefix it
with quotes (“), and Logo will do the rest. For example
“1278. Here is a list of some of the more useful VDU

SECTION TWENTY-EIGHT – OUTSIDE WORLD

158

commands with examples of how they might be used in
Logo:

Printing
VDU [1] is used to send a character or string of characters
to the printer only, and not to the screen. This is used to
send control codes, which change the print style. For
example, VDU [1 14] would instruct an Epson MX-80 to print
double width characters. Of course, this assumes the printer
is in place and turned on.

VDU [2] is used to turn on the printer (assuming you have
a printer in place and plugged in) while VDU [3] turns it
off. If children are turned off (as I am) by VDU commands,
then here is an example of how a VDU command can be
incorporated into a command which is more faithful to the
spirit of the language. This way you get the power of the
VDU commands, combined with the friendliness of Logo:

TO PRINTER :SWITCH

IF :SWITCH = “ON [VDU [2]]

IF :SWITCH = “OFF [VDU [3]]

END

PRINTER “ON

PRINTER “OFF

Labelling the Graphics Screen
VDU [5] is a wonderful tool which allows you to
write text on the graphics screen. For example:

CS VDU [5] PRINT [TURTLE AT HOME]

The words TURTLE AT HOME will be printed in the middle
of the screen, just below the turtle. VDU [4] returns the text
cursor to its normal position, and disables VDU [5].

VDU [5] can be used for labelling pictures or diagrams. For
example, to teach a child the screen coordinates, you could

SECTION TWENTY-EIGHT – OUTSIDE WORLD

159

use the following little program.

TO NAVIGATE

PU

MAKE “DRIVE RC

IF :DRIVE = “L [LT 10]

IF :DRIVE = “R [RT 10]

IF :DRIVE = “F [FD 20]

IF :DRIVE = “B [BK 20]

IF :DRIVE = “X [MAKE “X POS VDU [5] PR SE [X =] ROUND XCOR

SETPOS :X]

IF :DRIVE = “Y [MAKE “Y POS VDU [5] PR SE [Y =] ROUND YCOR

SETPOS :Y]

IF :DRIVE = “P [MAKE “P POS VDU [5] PR (SE [POS =] ROUND

FIRST POS ROUND FIRST BF POS) SETPOS :P]

IF :DRIVE = “S [VDU [4] STOP]

NAVIGATE

END

Some of you will recognise a new use for the INSTANT
procedure. The best way to understand this procedure is to
type it in and use the controls, L R F B X Y P and S. It will
give you lots more ideas for using VDU [5]. Warning: It
doesn’t work very well in MODES 2 and 5 as the characters
are too large.

Carriage Return
VDU [10] and VDU [13] together allow you to build a
carriage return into your programs. It is the equivalent of the
Logo command PRINT [].

Changing Colours
VDU [17] VDU [18] VDU [19] and VDU [20] all
affect the colours available in different modes. They are
discussed in some detail in Section 21 of this manual. See
especially the discussion of BACKGROUND.

Redefining Characters
VDU [23] allows you to redesign characters. It is not for the
novice.

SECTION TWENTY-EIGHT – OUTSIDE WORLD

160

Changing the Turtle’s field
VDU [24] allows the user to change the size of the graphics
window. This can only be done when the turtle field is a
window. If it is in WRAP or FENCE, you cannot change the
size of its field. Note if you do this, you also need to change
the origin of the turtle, using VDU [29]:

VDU (SE 29 :X :Y)

where :X and :Y are the coordinates of the new origin of
the graphics cursor. Note: These coordinates can be mapped
from the planning sheet on page 494 of the BBC User
Guide. Once again, this is probably not one for the novice
programmer. The procedure for doing it is given in Section
21 under WINDOW. It may be very useful in cases where
children want to be able to see more of their commands as
they run. This could be particularly true of children and
teachers who have worked with the DART turtle graphics
program.

Control Codes
The VDU drivers can be replaced at TOPLEVEL by using the
CTRL characters, by simultaneously pressing the CTRL key
and the key required by a given code. For example, CTRL U
deletes the current line. CTRL E allows you to write on the
graphics screen, just beneath the turtle.

A full list of these CTRL codes is provided on p. 378 of the
BBC User Guide.

Important note: The only exception to the information you
will find there, is that in the LOGO EDITOR, CTRL C is used
to move you from the Editor, back into your workspace.

161

SECTION TWENTY-NINE – WORKSPACE

Part of the memory of the computer is reserved for the
variables and procedures that you have written or loaded in
from a disk or cassette. This is called your workspace .

The available space is measured in NODES, each of which is
five bytes long. You can discover how many NODES are free
at any one time by typing PR NODES. The number of
NODES returned by this operation will range from 4,631 in
MODE 7 with an empty workspace down to 755 in MODES
0, 1 & 2 with an empty workspace.

The difference is due to the memory taken up by the BBC in
mapping the screen. This is as little as 1k bytes in MODE 7
and as much as 20k bytes in MODES 0, 1 and 2.

As procedures run, they use up memory space, sometimes
temporarily, and sometimes permanently. The memory held
temporarily is freed by a little procedure you cannot see
called “the garbage collector”, which bustles round clearing
memory for reuse.

The garbage collector works automatically, but you can force
an extra collection by typing RECYCLE. If you write lots of
procedures and never SAVE any of them on disk or cassette,
you will run out of memory, especially if you want to play
with all the colour combinations available in MODE 2, for
example.

Moving from one MODE to another with SETMODE adds an
extra dimension to programming in Logo with the BBC
Micro. We have made it as easy as possible by providing an
EDITOR which acts as a temporary store for procedures,
when you are switching from one MODE to another.

If you switch MODE without storing your procedures in the
EDITOR, you may get a message saying LOGO NOT FRESH.
This means there are procedures in the memory, which Logo
does not want to destroy, and therefore cannot adjust the
size of the workspace, as it must if it is to allocate more
memory to screen management, when moving, say, from
MODE 5 to MODE 2.

The maximum number of NODES available in each MODE is

SECTION TWENTY-NINE – WORKSPACE

162

as follows:

MODE 7 4,631
MODE 6 3,203
MODE 5 2,795
MODE 4 2,795
MODE 3 1,571
MODE 2 755
MODE 1 755
MODE 0 755

If you are lucky enough to have a second processor, you
have the same number of NODES in each MODE, 5,500.

As we have seen, Logo will not let you move from a MODE
with more available NODES to a MODE with fewer available
NODES, unless you first erase all procedures from your
workspace, with the command ERALL. Needless to say, you
should be careful first to protect your procedures and variable
names, either by SAVEing them to disk or cassette, or more
conveniently, by typing EDALL and stashing them in the
EDITOR, where you have room for 1,500 characters. Then
leave the Editor by using the ESCAPE key before
changing MODES.

Once you have changed MODES it is a simple matter to
move your procedures and variable names back into the
workspace, by first typing ED or EDIT without any procedure
names following the command, and then CTRL C.

If you want to move from a MODE with fewer NODES to
a MODE with more NODES, Logo does not protest, but
it does not take up the extra available memory unless
you have gone through the process of moving
procedures into the EDITOR and ERasing them from the
workspace.

The system was designed in this way to give you the
maximum possible number of NODES to work with in all
MODES. We stress this because it is different from other
Logos you may have seen, both on other computers or on
the BBC micro. But compare the number of procedures you
can fit in your workspace, or in your editor, with those other
Logos.

SECTION TWENTY-NINE – WORKSPACE

163

If you are familiar with other Logos, you will notice
some changes. We have got rid of POPS, PONS, POTS,
ERN, ERPS and ERNS. The main reason for this was that
we believed they were confusing. There are now two
basic commands PO (for Print Out) and ERASE (ER) and
two operations, OPPS (for OutPut ProcedureS) and OPNS
(for OutPut NameS). Combining the commands and
operations, you can do everything the old systems did,
and more. This change was conceived in conjunction
with the new syntax for SAVEing, EDITing, Printing Out
and ERASEing named variables, using [“name]

Here are the primitives you will need to manage your
workspace, know your way around it, and generally keep it in
good order. They include some which affect the Logo
system itself. You can use them to access the computer
memory directly. The more dangerous primitives start with a
dot (.). Before using them, be sure to SAVE all your work on
disk or cassette.

.CALL n command

Transfers control to a machine language subroutine starting
at address n (decimal). For advanced programmers only.

.CONTENTS operation

Outputs a list of everything contained in the Logo
workspace, including procedure and variable names, but NOT
the names of primitive procedures. It will also include odds
and ends of unfinished or cancelled business which the
garbage collection cannot reach. You can get rid of this
rubbish by saving your workspace to the Editor or to disk,
and then reloading it into your workspace. This can
sometimes help with space problems.

DEFINED? word operation

Outputs TRUE if the specified word is the name of a
procedure, otherwise outputs FALSE. If word is a primitive
procedure, DEFINED? outputs FALSE (see PRIMITIVE?). For

SECTION TWENTY-NINE – WORKSPACE

164

example:

PR DEFINE? “SQUARE

TRUE

assuming you do have SQUARE in your workspace.

PR DEFINE? “RANDOM

FALSE

even though RANDOM is a primitive procedure. Compare
with the operation of PRIMITIVE? on the same two words.

.DEPOSIT n byte command

Writes the specified byte into machine address n (decimal).
This command is provided for the use of experienced
programmers. It is the equivalent of POKE in most dialects
of BASIC (not BBC BASIC, see p409 of the BBC User
Guide). See .EXAMINE below.

ERALL command

ERrase ALL. Erases all the procedures and variables in your
workspace. This command also frees up all the nodes
available to you. Make sure that all the procedures you want
to keep are stored safely in the EDITOR or on a disk or
cassette before you use this file. Note especially the use of
ERALL when changing MODE. It allows Logo to take full
advantage of the extra workspace in a different MODE.

ERASE (ER) name namelist command

Erases the named procedure(s) or variables from the
workspace. Neither of the ERase commands (ERALL ERASE)
affect procedures in the EDITOR or SAVEd on disk or
cassette. The command works differently with procedures
and variables. For example ER “TRIANGLE erases a
procedure named TRIANGLE.

ER [TRIANGLE POLYGON SQUARE]

erases a list of procedures, TRIANGLE, POLYGON and
SQUARE. ER [“TRIANGLE], on the other hand, erases a
variable named TRIANGLE.

ER [“TRIANGLE “SQUARE SHAPES]

erases variables named TRIANGLE and SQUARE and a

SECTION TWENTY-NINE – WORKSPACE

165

procedure named SHAPES. If one of these variables or
procedures cannot be found, Logo aborts the ERASE and
returns you to toplevel. This protects you from erasing
variables or procedures in error.

The variables you can erase in this way are the global
variables, created by using the Logo primitive MAKE. For
example:

MAKE “FLOWERS [ROSES PANSIES BUTTERCUPS DAISIES]

MAKE “TRIANGLE [REPEAT 3 [FD 200 RT 120]]

PRINT :FLOWERS

RUN :TRIANGLE

Now type

ER [FLOWERS TRIANGLE]

and try again. They are still there. Now type

ER [“FLOWERS “TRIANGLE]

and try again. Logo has wiped them out. Now type:

TO FLOWERS

PR [ROSES PANSIES BUTTERCUPS DAISIES]

END

TO TRIANGLE

REPEAT 3 [FD 200 RT 120]

END

First test these procedures by typing first FLOWERS, then
TRIANGLE. Then type:

ER [“FLOWERS “TRIANGLE]

and they will, of course, survive. Type

ER [FLOWERS TRIANGLE]

and Logo forgets them. The same principle applies to the
command EDIT (ED) where names can either apply to
procedures or variables, also PO and SAVE.

Note 1: If you want to refer to a single variable name, it has
to be a list with one element. For example ER [“FLOWER].
Logo would treat “FLOWER, without square brackets around
it, as a procedure name. It also means you cannot have
procedure names beginning with QUOTES. Logo would treat
them as if they were variable names.

SECTION TWENTY-NINE – WORKSPACE

166

Note 2: ERNS and ERPS do not exist as primitives in
Logotron Logo. It is easy to create them:

TO ERNS

ERASE OPNS

END

TO ERPS

ERASE OPPS

END

.EXAMINE n operation

Outputs the contents of address n (decimal). See .DEPOSIT.
Provided for experienced programmers.

MODE operation

MODE outputs the number of the current MODE. When you
enter Logo, you are in MODE 4. So when you switch on the
computer, type:

PR MODE

4

See also SETMODE

NODES operation

Outputs the number of free NODES. This is very useful
when calculating precisely how to fit procedures into your
workspace. Try running the following procedure:

TO FIB :NUM

IF :NUM < 3 [OP 1]

PR NODES

OP (FIB :NUM – 1) + (FIB :NUM – 2)

END

This is an extravagant way of generating Fibonacci numbers.
This is the series which runs 1 1 2 3 5 8 13, in which each
number is the sum of the preceding two. The output from
FIB is the nth Fibonacci number. So FIB 3, outputs 2, FIB 7
outputs 13, and so on. In making this calculation, Logo uses
up NODES. The line PR NODES has been included to show
this actually happening. Try PR FIB 10, then RECYCLE PR
NODES. The RECYCLE procedure frees up all the NODES
which were temporarily used by FIB.

SECTION TWENTY-NINE – WORKSPACE

167

OPNS operation

Here is a brand new Logo primitive. It outputs all the names of
global variables contained in your workspace as a list. Using
OPNS (it stands for OutPut NameS), you can easily create ERNS
or PONS (see below under ERASE and PO).

OPPS operation

Here’s another brand new Logo primitive, the counterpart of
OPNS (see above). It outputs the names of all procedures
contained in your workspace as a list. Using OPPS (it stands for
OutPut ProcedureS), you can easily create ERNS, ERPS, POPS or
POTS (see above and below under ERASE and PO).

PO name namelist command

Stands for Print Out the definitions of the named
procedure(s) and variables. You cannot PO Logo primitive
procedures.

PO “SQUARE

TO SQUARE :SIDE

REPEAT 4 [FD :SIDE LT 90]

END

PO [SPINCOIN DICE “FRUIT]

TO SPINCOIN

IF EQUAL? RANDOM 2 0 [OP “HEADS] [OP “TAILS]

END

TO DICE

OP 1 + RANDOM 6

END

MAKE “FRUIT [ORANGES BANANAS PINEAPPLE]

POALL command

Stands for Print Out ALL. Prints the definition of every
procedure and the name and value of every variable in the
workspace.

Note PONS POPS and POTS do not exist in Logotron Logo.
PONS and POPS can be created exactly like ERNS and ERPS
(see ER above). POTS is rather different, as it only prints out

SECTION TWENTY-NINE – WORKSPACE

168

the titles. It needs a combination of two small procedures:

TO POTS

POTS1 OPPS

END

TO POTS1 :L

IF EMPTY? :L [STOP]

(PR “TO FIRST :L)

POTS1 BF :L

END

PRIMITIVE? word operation

Outputs TRUE if the specified word is a primitive procedure,
otherwise outputs FALSE. See DEFINED? above. For
example:

PR PRIMITIVE? “RANDOM

TRUE

PR PRIMITIVE? “SQUARE

FALSE

PRIMITIVES command

Prints out a list of all the PRIMITIVE procedures. In order to
inspect them, either print them out, using VDU [2] or slow
them down by using CTRL N, then page through them using
the SHIFT key.

RECYCLE command

Performs a garbage collection (see NODES above), freeing as
many NODES as possible. Garbage collections happen
automatically where necessary, but each one takes at least a
second. Running RECYCLE before a time-dependent activity
prevents the automatic garbage collector from slowing things
down at an awkward moment. In fact the Logotron garbage
collector is very efficient, and you will not often be aware of
its existence. But if you ever see the turtle pause in the
middle of a highly recursive procedure, it is likely to be the
garbage collector at work.

169

SECTION THIRTY – LOGO MESSAGES

Sometimes, even when you know a good deal about Logo,
the system will fail to understand you. When this happens,
Logo sends you a message. We don’t call them “error
messages”, because that suggests you have made an error,
whereas it often means only that the poor old computer isn’t
as smart as you. Where we leave dots , Logo will fill
in the name of the procedure and/or the word which is
bothering it.

I DON’T KNOW HOW TO

You will see a lot of this when you begin. Often because
you have mistyped the name of a procedure, or left off
quotes (“) or dots (:), so that Logo thinks a word is a
procedure, when really it is a word to be printed, or a
variable name to be evalutated.

YOU DON’T SAY WHAT TO DO WITH

Here’s another common message. Usually you should have
typed PRINT in front of a procedure which is an operation,
which outputs a value. Operations need to be preceded by
commands. Operations don’t know what to do with the
values they output, unless you tell them.

. . . . HAS NO VALUE

Logo has come across a word preceded by dots :, (:SIDE for
example), and cannot find a value. Check that you have given
it a value, either as an input to the procedure, or by creating
a global variable with MAKE.

NOT ENOUGH INPUTS TO

Perhaps you have provided a procedure with only one input,
where it expects two or more. For example:

IF EQUAL? SQRT 16 [PRINT “OK]

would get the message:

NOT ENOUGH INPUTS TO EQUAL?

. . . . DIDN’T OUTPUT TO

This may mean that you have tried to create a procedure to
work as an operation, but forgotten to include the command
OP to make sure it OUTPUTS a value to the calling
procedure. Or that you have put two commands together.

SECTION THIRTY – LOGO MESSAGES

170

For example

PR FD 100

The turtle draws a line on the screen, but doesn’t output to
PRINT, which expects at least one input. So Logo sends a
message:

FD DIDN’T OUTPUT TO PRINT

. . . . DOESN’T LIKE AS INPUT

Logo sends this message when a procedure requires inputs,
but gets the wrong kind.

PRINT SQRT “APPLE

SQRT DOESN’T LIKE “APPLE AS INPUT

SETPOS [:X :Y]

SETPOS DOESN’T LIKE [:X :Y] AS INPUT

Go back to the reference sections, look at the Logo words
you have used, and discover what kind of inputs they
expect. It isn’t always obvious what is wrong. For example,
SETPOS expects two numbers. Since :X and :Y are enclosed
as a list in square barackets, they cannot be evaluated. You
should have written

SETPOS SE :X :Y

We have indicated, wherever possible, the traps of this kind.

OUT OF SPACE

This frustrating message is sent when Logo cannot fit
another definition into its workspace, or when a procedure
uses up all the available nodes while running and cannot
finish its work. The solution is to tidy up your workspace,
getting rid of unwanted variables and procedures, or maybe
rewriting your procedure so that it uses less memory. Some
recursive procedures are particularly greedy. Another solution
may be to move to a MODE where you have more space.
You can sometimes win space by freshening your Logo. You
do this by saving you entire workspace:

SAVE :FILENAME

ERALL

LOAD :FILENAME

This gets rid of some unwanted bits and pieces that the
garbage collector may miss. You can do the same thing
more quickly by moving everything into the Editor with
EDALL, but if your problem is that you are OUT OF SPACE,
there may not be room in the Editor for all the procedures
you have to save.

SECTION THIRTY – LOGO MESSAGES

171

LOGO NOT FRESH

This message warns you when you try to change MODE
with procedures in the workspace. You have to clear them
out with ERALL (saving them in the Editor or on Disk before
you erase).

NOT POSSIBLE IN THIS MODE

This one is quite obvious and will be sent if you try to use
graphics commands in MODES 3, 6 or 7, where text only is
available.

. . . . ALREADY EXISTS

Occasionally, you try to define a procedure using a name
which you have already given to another procedure, or you
use the name of a primitive procedure, or you try to SAVE a
file under a filename which is already used. In all these
cases, Logo will stop you. For example:

TO COUNT :LIST

COUNT ALREADY EXISTS

STOPPED!!!

This is the message Logo sends when a procedure is
stopped while it is running by the user pressing the ESCAPE
key.

Other Logo Messages are:

WORD TOO LONG (more than 255 characters)
TOO MUCH INSIDE ()

UNEXPECTED)

NUMBER TOO BIG

BAD FILE NAME (eg. more than seven characters.)
YOU ARE AT TOP LEVEL (eg. type STOP or END at top
level)

172

SECTION THIRTY-ONE – GLOSSARY

The following is an alphabetically arranged glossary of all the
primitives contained in Logotron Logo for the BBC Micro. It
is designed for quick reference. More detailed descriptions
are given elsewhere in the manual. Consult the index for
page references. The # sign indicates a procedure is
“greedy”. It can handle any number of inputs, provided you
enclose them in parentheses (). See Section 20 for an ex
planation of the italicised Inputwords.

#AND pred1 pred2 Outputs TRUE if all its inputs are
TRUE.

ASCII char Outputs ASCII code (decimal) for char.

ARCTAN n Outputs ARCTAN of n in degrees.

BACK (BK) n Moves turtle n steps back.

BG Outputs number representing
background colour.

BF object Outputs all but last element of object.

BL object Outputs all but last element of object.

.CALL n Transfers control to a machine code
subroutine starting at address n.

CHAR n Outputs character whose ASCII code
is n.

CLEAN Erases graphics without affecting the
turtle’s state.

CS Erases graphics, restores turtle to
home position [0 0] and heading
to 0.

CT Erases text.

.CONTENTS Prints out list of workspace contents,
including mistypes etc.

COUNT object Outputs the number of elements in
object

CURSOR Outputs the current position of the
text cursor.

COS n Outputs the cosine of n degrees.

SECTION THIRTY-ONE – GLOSSARY

173

DEFINED? name Outputs TRUE if name is defined
procname

.DEPOSIT n byte Writes byte to address n.

EDALL Writes all procedures and variables in
the workspace to the editor.

EDIT (ED) name/list Writes named procedures and/or
variables to the editor.

EMPTY? object Outputs TRUE if object is empty, “
or [].

END Special word indicating end of
procedure definition.

ENVELOPE
num1 . . . num14

Controls output of SOUND, see BBC
User Guide.

EOF? filename If End Of File outputs TRUE, used in
conjunction with SETREAD and
SETWRITE.

EQUAL?
object1 object2

Outputs TRUE if its inputs are equal.

ERALL Erases everything in workspace, does
not affect contents of editor.

ER name/list Erases named procedures and/or
variables from workspace.

.EXAMINE n Outputs contents of address n (see
.DEPOSIT).

FALSE Special input for AND, IF, NOT, OR,
output by predicates.

FENCE Limits turtle’s movements to the
screen boundaries. See WRAP and
WINDOW.

FIRST object Outputs first element of object.

FORWARD (FD) n Moves turtle forward n steps.

FPUT object list Outputs new list formed by putting
object in front of list.

HEADING Outputs turtle’s heading.

HT Makes turtle invisible.

SECTION THIRTY-ONE – GLOSSARY

174

HOME Moves turtle to [0 0] and sets
heading to 0, but does not clean
graphics.

IF pred list1 list2 IF pred is true, THEN run list1,
ELSE run list2.

INT n Outputs INTeger portion of n.

ITEM n list Outputs ITEM n of list.

KEY? Outputs TRUE if a key has been
pressed but not yet read.

LAST object Outputs LAST element of object.

LEFT (LT) n Turns turtle n degrees
counterclockwise.

LIST object1 object2 Outputs a LIST of its inputs.

LIST? object Outputs TRUE if object is a list.

LOAD filename Loads filename from disk or cassette
into workspace.

LPUT object list Outputs new list formed by putting
object at end of list.

MAKE name object Makes name refer to object. See
THING.

MEMBER? object list Outputs TRUE if object is included in
list.

MODE Outputs number of current
MODE (1- 7).

NAME? name Outputs TRUE if name has a value
(THING).

NODES Outputs number of free NODES.

NOT pred Outputs TRUE if pred is FALSE.

NUMBER? object Outputs TRUE if object is a number.

OPNS Outputs NameS of variables currently
in workspace.

OPPS Outputs names of ProcedureS
currently in workspace.

#OR pred1 pred2 Outputs TRUE if any of its inputs are
TRUE.

SECTION THIRTY-ONE – GLOSSARY

175

OP object Returns control to caller, with object
as OUTPUT.

PC Outputs current pen colour.

PD Puts turtle’s pen down, and drawing.

PE Turtle erases lines if it draws over
them.

PU Lifts turtle’s pen so it is no longer
drawing.

PO name/list Prints definitions of named procedures
and variables.

POALL Prints out definitions of all procedures
and variables.

POS Outputs coordinates of turtle’s
position, x y.

PRIMITIVE? name Outputs TRUE if name refers
to a primitive procedure.

PRIMITIVES Prints the list of all primitive
procedures included in Logotron
Logo.

#PRINT (PR) object Prints object, stripping outer brackets
and quotes, follows with carriage
return.

#PROD a b Outputs a multiplied by b.

QUOT a b Outputs the INTeger QUOTient
obtained by dividing a by b and
truncating the answer.

RANDOM n Outputs random positive integer
between 0 and n – 1.

RC Outputs character read by the current
device (default is keyboard), waits if
necessary. Does not echo
output to screen.

RL Outputs line read by the current
device (default is keyboard), waits if
necessary. Echoes output to screen.

RECYCLE Forces garbage collection, freeing
available NODES.

SECTION THIRTY-ONE – GLOSSARY

176

REMAINDER a b Outputs integer remainder obtained
by dividing a by b and rounding
the result.

ROUND n Outputs n rounded off to the nearest
integer.

RIGHT (RT) n Turns turtle n degrees clockwise.

RUN list Runs list, outputs what list outputs.

SAVE filename
name/list

SAVEs to disk or cassette named
procedures or variables, or entire
workspace if no names are specified.

SCRUNCH Outputs current ratio of horizontal to
vertical turtle steps.

#SE obj1 obj2 Outputs unified list of its inputs.

SETBG n Sets background colour to colour n.

SETCURSOR [x y] Sets text cursor at position
indicated by coordinates x and y.

SETH n Sets turtles heading to n degrees (0
up the screen).

SETMODE n Sets MODE to n of BBC Micro’s
MODES 1-7, see BBC User Guide.

.SETNIB n Produces special graphics effects; n
must be in the range 0-255,
equivalent to parameter K in BBC’s
PLOT command.

SETPC n Sets pencolour to colour n.

SETPOS [x y] Moves turtle to position given by x
and y on graphics screen.

SETREAD filename Sets the filename from which RC and
RL, will receive inputs.

SETREAD [] Closes the file opened with SETREAD.

SETSCRUNCH n Sets ratio (n) of horizontal turtle step
to vertical turtle step.

SETWRITE filename Opens file and sends copy of all
characters displayed on the screen
to filename.

SECTION THIRTY-ONE – GLOSSARY

177

SETX x Moves turtle horizontally to x-
coordinate at x.

SETY y Moves turtle horizontally to y-
coordinate at y.

SHOW object Prints object without stripping outer
brackets.

SHOWN? Outputs TRUE if turtle is showing.

ST Makes turtle visible.

SIN n Outputs the sine of n degrees.

SOUND num1...num4 Provides access to BBC Micro’s
sound facilities, see User Guide.

SQRT n Outputs square root of positive n.

STOP Stops current procedure and returns
control to caller.

#SUM a b Outputs the sum of its inputs.

TAN n Outputs the tan of n degrees.

TS Switches from graphics screen to text
screen, clearing graphics and text.

THING name Outputs object referred to by name,
equivalent to :name.

TO name inputs Signals start of title line of defined
procedure.

TOPLEVEL Stops all procedures and returns
control to top level (ie keyboard).

TRACE procname Enables user to trace all inputs and
outputs of running procedures, used
for debugging procedures.

TRUE Special input for AND, IF, NOT, OR,
output by predicates, see FALSE.

#TYPE object1 . . . Prints object, but leaves cursor at the
end of line, without carriage return.

USE modulename Links external modules containing
special primitives or extensions
to Logo.

SECTION THIRTY-ONE – GLOSSARY

178

VDU list Gives access to BBC operating
system. List contains parameters
required to control VDU drivers.
See BBC User Guide.

WAIT n Causes Logo to WAIT n 60ths of a
second before executing next
instruction.

#WORD word1 word2 Outputs word made up of its inputs.

WRAP Maps turtle field onto torus, so that
whenever it leaves screen, it
reappears on opposite edge.

XCOR Outputs x-coordinate of turtle’s
position.

YCOR Outputs y-coordinate of turtle’s
position.

✻suffix inputs Star commands, like VDU commands,
give direct access to BBC Micro’s
operating system. See section 20 (p.96)
and 28 (p.147).

a + b Outputs a plus b.

a – b Outputs a minus b.

a ✻ b Outputs a times b.

a / b Outputs a divided by b.

a < b Outputs TRUE if a is less than b.

a > b Outputs TRUE if a is greater than b.

object1 = object2 Outputs TRUE if object1 is equal to
object2.

\ Tells Logo to treat the next character
literally, without reference to its
meaning.

179

SECTION THIRTY-TWO – INDEX

Logo Primitives are listed in BOLD CAPITAL letters, other
procedures, mentioned in the text, are listed in CAPITAL
letters.

ABS 126
Abelson, Harold 45
Addition 90
ADDTOVOCAB 69
Advanced Logo 5
AGAIN 71, 151
Alphabet 19
AND 141
ANY.OF 143
ARC 15
ARCOSINE 119
ARCSINE 119
ARCTAN 119
Arctangent 119
Arithmetic 89, 118
Arrows 128
ASCII 106, 108
ASK 70

✻B. 96
BABBLE 47
BACK 7, 97
Bad Filename 23, 171
BALRAN 125
BASIC 96
BBC User Guide 8
BEND 15
BF 46, 61, 105
BG 97
BK 9
BL 46, 61, 107
BLUEPEN 35
Boolean values 82, 119
BOX 28
BOXES 67
BRACKETS [] 11, 84
BREAK key 81

ButLast 107
ButFirst 105

CALCULATOR 137
.CALL 163
Carriage Return 159
✻CAT 145
Changing colours 159
CHAR 108
CHATTER 47
CHECK 65, 83
CHOOSE 69
CLEAN 8, 99
Colours 35, 93, 97
Command 50, 85, 135
✻COMPACT 96, 146
.CONTENTS 71, 163
Control Codes 160
COPY key 8, 129, 155
COPYDEF 155
COPY F8 131
COPY F9 131
COS 119
Cosine 119
COUNT 46, 61, 108
COUNTDOWN 139
CREATE 68, 71
CS 7, 93, 99
CT 147
CTRL BREAK 96, 146
CTRL C 93, 131, 160
CTRL N 168
CUBE 120
CURSOR 147

Dart 160
DECIDE 135

SECTION THIRTY-TWO – INDEX

180

DEFINE 154
DEFINED? 163, 168
DEL 66
DELETE 67, 72
Delimiter 82
.DEPOSIT 164
DICE 49, 84
DiSessa, Andy 45
DISPLAY 64
DIST 75
DIST1 75
Division 90, 124
DIVISOR? 121, 135
DO 66
DOT 99
Dots (:) 17, 84, 169
DRIBBLE 59, 145

ED 116, 127
EDALL 93, 127
EDIT 20, 127
Edit Buffer 92
Editor 20, 127, 162
Editor Commands 130
Else 56, 135
EMPTY? 108, 134
Empty list [] 106
Empty word “ 105
END 15, 80, 133
ENVELOPE 147, 156
EOF? 148
EQUAL 73
EQUAL? 118, 134
Equality 90
Equals sign 125
ER 16, 163
ERALL 162, 164
ERASEFILE 155
ERN 163
ERNS 55, 163
ERPS 163
ESCAPE key 6, 81, 131
EVEN 85
EVEN.THROW 84

.EXAMINE 166
EXPONENT 125
Exponential 118

FACTORIAL 125
FALSE 55, 82, 135, 141
FD 9
FENCE 99
FETCH 66
FIB 94
Filename 23
FILL 65
FIND 61, 65, 129
FIRST 46, 61, 105, 109
Flow of control 134
FOREVER 64, 71, 74
FORGET 67
✻FORMAT 96, 146
FORWARD 7, 100
FPUT 61, 105, 110
Function keys 130, 131
F0, F1 etc. 130, 131
✻FX 147

GET 71
Global 87, 115, 165
Glossary 172
Grammar 79
Graphics 93, 97, 153
GREET 149
Greater-than (>) 124

HEADING 44, 97, 100
HELLO 80
HOME 100
HOUSE 24
HT 12, 100

IF 32, 56, 134, 141
INC 117
Inequality 90
Infix 90, 118, 123
Input 70, 78, 105, 170
Inputs 83
INSERT 64

SECTION THIRTY-TWO – INDEX

181

Installation 1
INT 118, 120
Integers 118
INTERSECT 74
ITEM 46, 61, 110
ITEM1 109

KEY? 57, 148

LAST 46, 61, 110
LEFT 7, 100
Less-than (<) 124
LID 29
LINE 75
LINEMULT 126
LISP 5
LIST 61, 105, 109, 111
LIST? 111, 134
Lists 11, 53, 81, 105
✻LOAD 146
LOAD 148
LOADPICT 146
Local 86, 116
Logical 119
Logical operations 141
Logo 1
✻LOGO 96, 145
Logo Message 7, 169
Logomotion 60
Logotron 95, 172
LOOKFOR1 139
LOOKUP 66, 70
LPUT 61, 105, 112
LT 9

Machine 144
MAKE 17, 86, 115, 165
MANY 64
MAP 75
MATCHES 65
MAX 85, 125
MEMBER? 74, 112, 134
MIN 125
Minus sign 74, 123
MODE 36, 92, 161 166

Modes 91, 161
MOVE 59
MOVETO 43, 75
MULT 126
Multiplication sign 124

NAME 82, 134
NAME? 117
Names 17
NEWSQUARE 17
NEWTRIANGLE 17
NODES 37, 93, 161, 166
NOT 141, 142
Notation 79
NUMBER? 112, 135
Numbers 82

Objects 81
OP 48, 134, 136, 169
Operating System 95
Operation 50, 85, 105
OPNS 163, 167
OPPS 163, 167
OR 141, 143

?P 66
PAPERCOL 113
Papert, Seymour 18
Parentheses 91
PC 101
PD 9, 101
PE 10, 101
PHRASEBOOK 67
PI 126
PICK 108
PICKRANDOM 47, 151
Plus sign 27, 123
PO 116, 163, 167
POALL 167
POLY 40
POLYSPI 40, 139
POLYTRIP 39
PONS 163, 167
POPS 163, 167
POS 43, 101

SECTION THIRTY-TWO – INDEX

182

Position 97
POTS 163, 167
Postfix 55
POTS 168
Prefix 54, 90, 118
Prettyprinting 75
Primitive 80
PRIMITIVE? 168
PRIMITIVES 168
PRINT 17, 27, 105, 148
PR 17, 27, 105, 148
Printing 158
Procedure 15, 80
PROD 54, 118, 120
Prompts 91
PR.OUT 154
PU 9, 100
PUT 67, 70

Quotes (“) 17, 84, 169
QUIZ 151
QUOT 118, 120

RANDOM 44, 90, 118, 121
RC 39, 57, 149, 156
READLINE 154
READNUMBER 113
Real numbers 118
Recursion 94
Recursive procedures 30
RECYCLE 101, 166, 168
Redefine Characters 159
REDPAPER 35
REDPEN 35
REFILE 145
REMAINDER 118, 121
REMEMBER 58
REMOVE 61, 71
REPEAT 11, 134, 137
REPLACE 129
RESPOND 149
RETURN key 6
REV 52, 110
REVERSE 51

RIGHT 7, 9, 101
RL 150
ROM 1
ROUND 118, 122
Ross, Peter 45
RUBOUT 58
RT 7, 9, 101
RUN 137

SAVE 23, 116, 152
SAVEPICT 146
SCAN 71
Scientific notation 118
Screens 91
SCRUNCH 102
SE 39, 46, 61, 105, 113
Second Processor 162
SETBG 34, 102
SETCURSOR 153
SETH 44, 102
SETMODE 36, 93, 161
.SETNIB 102
SETPAL 37, 98
SETPC 34, 102
SETPOS 43, 103
SETREAD 148, 150, 153
SETSCRUNCH 103
SETUP 57, 67
SETWRITE 148, 154
SETX 42, 103, 104
SETY 42, 103, 104
Sharples, Mike 61
SHIFT ARROW keys 128
SHOW 47, 105, 155, 156
SIMPLIFY 57
SIN 122
SLOWFD 140
SOUND 147, 156
SPI 94
SPIRAL 31
SPLITSCREEN 104
✻SPOOL 59, 145
Sprite Board 4
SQRT 122

SECTION THIRTY-TWO – INDEX

183

SQUARE 15, 25
SQUIGGLE 30
ST 12, 103
STAR 44, 86
STARTUP 155
STOP 31, 134, 136, 138
STOPPED!!! 171
STROBE 59
Subprocedure 81, 134
SUBSET 73
Subtraction 90
✻SUFFIX 145, 157
SUM 54, 118, 122
SUN 15
Superprocedure 51, 134
Syntax 79

TALK 109
TALLY 30
TAN 122
TDIST 75
TEACH 61, 64
Texier, Alain 60
TEXT 154
TEXTCOL 113
TEXT’N’PAPER 113
Then 135
THING 82, 87, 117
Things 17
Title line 81
TO 15, 80, 133
TOPLEVEL 80, 91, 134
TRACE 140
TRIANGLE 20, 25, 107
TRUE 55, 82, 135, 141
TS 93, 157
Turtle graphics 97
Turtle’s field 160
TYPE 156, 157

UNDRIBBLE 145
UNION 74
UNTIL 74
USE 5

Variables 86, 115
Variables 35, 95, 104
VOWEL? 135

✻W. 145
WAIT 140
Watt, Daniel 45
WEEK 114
WELCOME 151
WHILE 74
WINDOW 9, 104, 157, 160
WORD 61, 89, 105, 113
WORD? 114, 135
Words 81, 105
Workspace 20, 161, 80
WRAP 9, 104

XCOR 104
XOR 42, 126

YELLOWPAPER 35
YCOR 42, 104

ZIGZAG 15

= 90, 118, 125, 135
/ 27, 54, 90, 118, 124
> 90, 118, 125, 135
< 90, 118, 124, 135
+ 90, 118, 123
- 90, 118, 123
✻ 27, 54, 90, 118
\ 96, 147, 149

